Document Type : Research Article
Authors
Department of Computer Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Abstract
Keywords
[1] | D. Mendez Mena, I. Papapanagiotou, and B. Yang. Internet of things: Survey on security. Information Security Journal: A Global Perspective, 27(3):162--182, 2018. [ bib | DOI ] |
[2] | J. Hou, L. Qu, , and W. Shi. A Survey on Internet of Things Security from Data Perspectives. Computer Networks, 148:295--306, 2019. [ bib | DOI ] |
[3] | B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and de S. C. Alvarenga. A survey of intrusion detection in Internet of Things. Journal of Network and Computer Applications, 84:25--37, 2017. [ bib | DOI ] |
[4] | E. Besharati, M. Naderan, and E. Namjoo. LR-HIDS: Logistic Regression Host-based Intrusion Detection System for Cloud Environments. Journal of Ambient Intelligence and Humanized Computing, 10(9):3669--3692, 2019. [ bib | DOI ] |
[5] | W. Hatcher Grant and W. Yu. A Survey of deep learning: platforms, applications, and emerging research trends. IEEE Access, 6:24411 -- 24432, 2018. [ bib | DOI ] |
[6] | D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim. A survey of deep learning-based network anomaly detection. Cluster Computing, 22(1):949--961, 2019. [ bib | DOI ] |
[7] | F. Farahnakian and J. Heikkonen. A deep auto-encoder based approach for intrusion detection system. In 2018 20th International Conference on Advanced Communication Technology (ICACT), pages 178--183. IEEE, 2018. [ bib | DOI ] |
[8] | N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi. A Deep learning approach to network intrusion detection. IEEE Transactions on Emerging Topics in Computational Intelligence, 2(1):41 -- 50, 2018. [ bib | DOI ] |
[9] | Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher, and Y. Elovici. N-BaIoT—Network-Based Detection of IoT Botnet Attacks Using Deep Autoencoders. IEEE Pervasive Computing, 17(3):12--22, 2018. [ bib | DOI ] |
[10] | J. Kim, M. Shim, S. Hong, Y. Shin, and E. Choi. Intelligent Detection of IoT Botnets Using Machine Learning and Deep Learning. Applied Sciences, 10(19):7009, 2020. [ bib | DOI ] |
[11] | Y. Fu, F. Lou, F. Meng, Z. Tian, H. Zhang, and F. Jiang. An Intelligent Network Attack Detection Method Based on RNN. In 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), pages 483--489. IEEE, 2018. [ bib | DOI ] |
[12] | K. Alrawashdeh and C. Purdy. Toward an Online Anomaly Intrusion Detection System Based on Deep Learning. In 2016 15th IEEE international conference on machine learning and applications (ICMLA), pages 195--200. IEEE, 2019. [ bib | DOI ] |
[13] | UCL Machine Learning Repository: detection_of_IoT_botnet_attacks_N_BaIoT Data Set. The n-baiot dataset. https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT, Date Accessed: 8 October 2020. [ bib ] |
[14] | GitHub. Mirai-source-code. https://github.com/jgamblin/Mirai-Source-Code, Date Accessed: 8 October 2020. [ bib ] |
[15] | M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou. Understanding the Mirai Botnet. In 26th {USENIX} security symposium ({USENIX} Security 17), pages 1093--1110, 2017. [ bib | DOI ] |
[16] | A. Marzano, D. Alexander, O. Fonseca, E. Fazzion, C. Hoepers, K. Steding-Jessen, M. H. Chaves, Í. Cunha, D. Guedes, and W. Meira. The Evolution of Bashlite and Mirai IoT Botnets. In 2018 IEEE Symposium on Computers and Communications (ISCC), pages 00813--00818. IEEE, 2018. [ bib | DOI ] |
[17] | Z. Khandezamin, M. N. Tahan, and M. J. Rashti. Intelligent detection of breast cancer with feature selection based on logistic regression and support vector machine Classification. Journal of Soft Computing and Information Technology (JSCIT), 9(2):115--123, 2020. [ bib | DOI ] |
[18] | C.Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. Activation Functions: Comparison of Trends in Practice and Research for Deep Learning. In 2nd International Conference on Computational Sciences and Technology, (INCCST), 2020. [ bib | DOI ] |
[19] | Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai. Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection. In Network and Distributed System Security Symposium, 2018. [ bib | DOI ] |
[20] | Project jupyter. https://jupyter.org/, Date Accessed: 8 October 2020. [ bib ] |
[21] | Broadcom Inc. Symantec. internet security threat report (istr). https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf, Date Accessed: 8 October 2020. [ bib ] |
[22] | S. Alabdulsalam, K. Schaefer, T. Kechadi, and N. Le-Khac. Internet of Things Forensics – Challenges and a Case Study. In IFIP International Conference on Digital Forensics, pages 35--48. Springer, 2018. [ bib | DOI ] |
[23] | Pwc’s global economic crime and fraud survey. https://www.pwc.com/gx/en/forensics/global-economic-crime-and-fraud-survey-2018.pdf, Date Accessed: 8 October 2020. [ bib ] |
[24] | G. Lally and D. Sgandurra. Towards a Framework for Testing the Security of IoT Devices Consistently. In International Workshop on Emerging Technologies for Authorization and Authentication, pages 35--48. Springer, 2018. [ bib | DOI ] |
[25] | M. Stoyanova, Y. Nikoloudakis, S. Panagiotakis, E. Pallis, and E. K. Markakis. A Survey on the Internet of Things (IoT) Forensics: Challenges, Approaches, and Open Issues. IEEE Communications Surveys & Tutorials, 22(2):1191--1221, 2020. [ bib | DOI ] |
[26] | IoT security market. IoT security market watch-key market needs and solution providers in the IoT landscape. In Global Digital Transformation Research Team at Frost & Sullivan, 2017. [ bib | DOI ] |
[27] | A. H. M. Aman, E. Yadegaridehkordi, Z. S. Attarbashi, R. Hassan, and Y. Park. A Survey on Trend and Classification of Internet of Things Reviews. IEEE Access, 8:111763 -- 111782, 2020. [ bib | DOI ] |
[28] | E. Tsogbaatar, M. H. Bhuyan, Y. Taenaka, D. Fall, K. Gonchigsumlaa, E. Elmroth, and Y. Kadobayashi. DeL-IoT: A deep ensemble learning approach to uncover anomalies in IoT. Internet of Things, 14:100391, 2021. [ bib | DOI ] |
[29] | I. Andrea, C. Chrysostomou, and G. Hadjichristofi. Internet of things: Security vulnerabilities and challenges. In 2015 IEEE Symposium on Computers and Communication (ISCC), pages 180--187. IEEE, 2015. [ bib | DOI ] |
[30] | A. L. Buczak and E. Guven. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE Communications surveys & tutorials, 18(2):1153 -- 1176, 2015. [ bib | DOI ] |
[31] | H. Bahsi, S. Nõmm, and F. B. La Torre. Dimensionality Reduction for Machine Learning Based IoT Botnet Detection. In 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), pages 1857--1862. IEEE, 2018. [ bib | DOI ] |
[32] | M. M. U. Chowdhury, F. Hammond, G. Konowicz, C. Xin, H. Wu, and J. Li. A few-shot deep learning approach for improved intrusion detection. In 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), pages 456--462. IEEE, 2017. [ bib | DOI ] |
[33] | A. Javaid, Q. Niyaz, W. Sun, and M. Alam. A Deep Learning Approach for Network Intrusion Detection System. 9th EAI International Conference on Bio-inspired Information and Communications Technologies, 3(9), 2016. [ bib | DOI ] |
[34] | T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho. Deep learning approach for Network Intrusion Detection in Software Defined Networking. In 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), pages 258--263. IEEE, 2016. [ bib | DOI ] |
[35] | J. Zhang and M. Zulkernine. A hybrid network intrusion detection technique using random forests. In First International Conference on Availability, Reliability and Security (ARES'06). IEEE, 2006. [ bib | DOI ] |
[36] | N. B. Amor, S. Benferhat, and Z. Elouedi. Naive Bayes vs decision trees in intrusion detection systems. In Proceedings of the 2004 ACM symposium on Applied computing, pages 420--424. IEEE, 2004. [ bib | DOI ] |
[37] | S. Mukkamala, G. Janoski, and A. Sung. Intrusion detection using neural networks and support vector machines. In Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No. 02CH37290), pages 1702--1707. IEEE, 2002. [ bib | DOI ] |
[38] | S. Nõmm and H. Bahsi. Unsupervised Anomaly Based Botnet Detection in IoT Networks. In 2018 17th IEEE international conference on machine learning and applications (ICMLA), pages 1048--1053. IEEE, 2018. [ bib | DOI ] |