Deploying IoT, Based on NDN Protocol in a Fog Computing Infrastructure

Document Type : Research Article

Authors

Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran.

Abstract

The Internet of Things is a paradigm for connecting objects using a common set of network technologies. Implementing IoT by host-to-host communication models, such as IP, faces several challenges. It is because of the heterogeneous and constrained devices that connect temporarily to different networks, and different security domains. Also it requires communication capabilities, for both local network and on a global scale. This paper examines how NDN, a proposed architecture for future of the Internet, can respond to these challenges and provide a safer and more straightforward method for deploying IoT. The NDN content-centric communication model makes it possible to interact directly with the contents, and because of this, IoT networks can be more easily developed and configured.
Also we show that using NDN would be more fruitful if it is combined with Fog Computing. So, we propose a four-layer model in order to achieve a better structure for IoT. In this model, NDN is used as the core of the network, and routing operations are performed based on contents' names. Also, Fog Computing is used as the mediator between low-level sensors of IoT, the core network, and at the highest level, the cloud which is a fundamental component in IoT networks. In order to evaluate this model in comparison with common models in IoT, we compare the NDN protocol with the MQTT protocol, one of the most commonly used IoT protocols, based on the amount of resource usage and delay.

Keywords


[1] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Computer networks, 54(15):2787--2805, 2010. [ bib | DOI ]
[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Papadopoulos, L. Wang, and B. Zhang. Named data networking. ACM SIGCOMM Computer Communication Review, 44(3):66--73, 2014. [ bib | DOI ]
[3] F. Oehlmann. Content-centric networking. Network, 43, 2013. [ bib | DOI ]
[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pages 13--16. ACM, 2012. [ bib | DOI ]
[5] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev, J. Thompson, J. Burke, B. Zhang, and L. Zhang. Named data networking of things. In 2016 IEEE first international conference on internet-of-things design and implementation (IoTDI), pages 117--128. IEEE, 2016. [ bib | DOI ]
[6] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. A survey of information-centric networking. IEEE Communications Magazine, 50(7):26 -- 36, 2012. [ bib | DOI ]
[7] W. Shang, Q. Ding, A. Marianantoni, J. Burke, and L. Zhang. Securing building management systems using named data networking. IEEE Network, 28(3):50 -- 56, 2014. [ bib | DOI ]
[8] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro. Information Centric Networking in IoT scenarios: The case of a smart home. In 2015 IEEE international conference on communications (ICC), pages 648--653. IEEE, 2015. [ bib | DOI ]
[9] J. François, T. Cholez, and T. Engel. CCN traffic optimization for IoT. In 2013 Fourth International Conference on the Network of the Future (NoF), pages 1--5. IEEE, 2013. [ bib | DOI ]
[10] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro. Named data networking for IoT: An architectural perspective. In 2014 European Conference on Networks and Communications (EuCNC), pages 1--5. IEEE, 2014. [ bib | DOI ]
[11] M. Amadeo, C. Campolo, and A. Molinaro. Internet of things via named data networking: The support of push traffic. In 2014 International Conference and Workshop on the Network of the Future (NOF), pages 1--5. IEEE, 2014. [ bib | DOI ]
[12] M. S. M. Shah, Y. Leau, Z. Yan, and M. Anbar. Hierarchical Naming Scheme in Named Data Networking for Internet of Things: A Review and Future Security Challenges. IEEE Network, 10:19958 -- 19970, 2022. [ bib | DOI ]
[13] B. Alahmri, S. Al-Ahmadi, and A. Belghith. Efficient pooling and collaborative cache management for NDN/IoT networks. IEEE Access, 9:43228 -- 43240, 2021. [ bib | DOI ]
[14] A. Aboodi, T. Wan, and G. Sodhy. Survey on the Incorporation of NDN/CCN in IoT. IEEE Access, 7:71827 -- 71858, 2019. [ bib | DOI ]
[15] A. Attam and I. Moiseenko. Ndnblue: Ndn over bluetooth. NDN Technical Report NDN-0015, 2013. [ bib | DOI ]
[16] A. Abane, M. Daoui, S. Bouzefrane, and P. Muhlethaler. Ndn-over-zigbee: A zigbee support for named data networking. Future Generation Computer Systems, 93:792--798, 2019. [ bib | DOI ]
[17] W. Shang, A. Afanasyev, and L. Zhang. The design and implementation of the NDN protocol stack for RIOT-OS. In 2016 IEEE Globecom Workshops (GC Wkshps), pages 1--6. IEEE, 2016. [ bib | DOI ]
[18] Mqtt. https://mqtt.org/, Date Accessed: June 13, 2022. [ bib ]
[19] Coap. http://coap.technology/, Date Accessed: June 13, 2022. [ bib ]
[20] nilforoosh/iot-ndn. https://github.com/nilforoosh/IoT-NDN, Date Accessed: June 13, 2022. [ bib ]
[21] T. Yokotani and Y. Sasaki. Comparison with HTTP and MQTT on required network resources for IoT. In 2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), pages 1--6. IEEE, 2016. [ bib | DOI ]
[22] C. Gündoğan, P. Kietzmann, T. C. Schmidt, M. Lenders, H. Petersen, and M. Wählisch. NDN, CoAP, and MQTT: A Comparative Measurement Study in the IoT. In Proceedings of the 5th ACM Conference on Information-Centric Networking, pages 159--171. ACM, 2018. [ bib | DOI ]
[23] R. A. Light. Mosquitto: server and client implementation of the MQTT protocol. Journal of Open Source Software, 3(13), 2017. [ bib | DOI ]
[24] A. Stanford-Clark and H. L. Truong. Mqtt for sensor networks (mqtt-sn) protocol specification. Journal of Open Source Software, 1(2):1--28, 2013. [ bib | DOI ]
[25] J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. Ramakrishnan. COPSS: An Efficient Content Oriented Publish/Subscribe System. In 2011 ACM/IEEE Seventh Symposium on Architectures for Networking and Communications Systems, pages 99--110. IEEE, 2011. [ bib | DOI ]
[26] M. Zhang, V. Lehman, and L. Wang. Scalable name-based data synchronization for named data networking. In IEEE Infocom 2017-IEEE Conference on Computer Communications, pages 1--9. IEEE, 2017. [ bib | DOI ]
[27] C. Gündoğan, P. Kietzmann, T. C. Schmidt, and M. Wählisch. HoPP: Robust and Resilient Publish-Subscribe for an Information-Centric Internet of Things. In 2018 IEEE 43rd Conference on Local Computer Networks (LCN), pages 331--334. IEEE, 2018. [ bib | DOI ]
[28] D. Soni and A. Makwana. A survey on MQTT: a protocol of internet of things (IoT). In International Conference On Telecommunication, Power Analysis And Computing Techniques (ICTPACT-2017), pages 173--177, 2017. [ bib | DOI ]