Document Type : Research Article
Authors
Departement of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.
Abstract
Keywords
[1] | A. H. Koblitz, N. Koblitz, and A. Menezes. Elliptic curve cryptography: The serpentine course of a paradigm shift. Journal of Number theory, 131(5):781--814, 2011. [ bib | DOI ] |
[2] | D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to elliptic curve cryptography. Springer Science & Business Media, 2006. [ bib ] |
[3] | P. Choi, M. Lee, J. Kim, and D. Kim. Low-complexity elliptic curve cryptography processor based on configurable partial modular reduction over nist prime fields. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(11):1703--1707, 2017. [ bib | DOI ] |
[4] | Z. Liu, X. Huang, Z. Hu, M. K. Khan, H. Seo, and L. Zhou. On emerging family of elliptic curves to secure internet of things: Ecc comes of age. IEEE Transactions on Dependable and Secure Computing, 14(3):237--248, 2016. [ bib | DOI ] |
[5] | P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Annual international cryptology conference, pages 388--397. Springer, 1999. [ bib | DOI ] |
[6] | E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage model. In International workshop on cryptographic hardware and embedded systems, pages 16--29. Springer, 2004. [ bib | DOI ] |
[7] | X. Fan, S. Peter, and M. Krstic. Gals design of ecc against side-channel attacks—a comparative study. In 2014 24th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), pages 1--6. IEEE, 2014. [ bib | DOI ] |
[8] | P. C. Liu, H. C. Chang, and C. Y. Lee. A true random-based differential power analysis countermeasure circuit for an aes engine. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(2):103 -- 107, 2012. [ bib | DOI ] |
[9] | M. Joye and C. Tymen. Protections against differential analysis for elliptic curve cryptography. In international workshop on cryptographic hardware and embedded systems, pages 377--390. Springer, 2001. [ bib | DOI ] |
[10] | J. Lee, J. Hsiao, H. Chang, and C. Lee. An efficient dpa countermeasure with randomized montgomery operations for df-ecc processor. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(5):287 -- 291, 2012. [ bib | DOI ] |
[11] | K. Liao, X. Cui, N. Liao, T. Wang, D. Yu, and X. Cui. High-performance noninvasive side-channel attack resistant ecc coprocessor for gf (2m). IEEE Transactions on Industrial Electronics, 64(1):727 -- 738, 2016. [ bib | DOI ] |
[12] | Z. Khan and M. Benaissa. High speed and low latency ecc implementation over gf(2m) on fpga. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(1):165 -- 176, 2017. [ bib | DOI ] |
[13] | W. N. Chelton and M. Benaissa. Fast elliptic curve cryptography on fpga. IEEE transactions on very large scale integration (VLSI) systems, 16(2):198 -- 205, 2008. [ bib | DOI ] |
[14] | K. Liao, X. Cui, N. Liao, T. Wang, X. Zhang, Y. Huang, and D. Yu. High-speed constant-time division module for elliptic curve cryptography based on gf(2m). In 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pages 818--821. IEEE, 2014. [ bib | DOI ] |
[15] | J. Lee, S. Chung, H. Chang, and C. Lee. An efficient countermeasure against correlation power-analysis attacks with randomized montgomery operations for df-ecc processor. In International Workshop on Cryptographic Hardware and Embedded Systems, pages 548--564. Springer, 2012. [ bib | DOI ] |
[16] | J. Lee, Y. Chen, C. Tseng, H. Chang, and C. Lee. A 521-bit dual field elliptic curve cryptographic processor with power analysis resistance. In 2010 Proceedings of ESSCIRC, pages 206--209. IEEE, 2010. [ bib | DOI ] |
[17] | J. Lai and C. Huang. A highly efficient cipher processor for dual-field elliptic curve cryptography. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(5):394 -- 398, 2009. [ bib | DOI ] |