Document Type : Research Article
Authors
1 Department of Computer Engineering, Shahreza Campus, University of Isfahan, Isfahan, Iran.
2 Department of Artificial Intelligence, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran.
Abstract
Keywords
Main Subjects
[1] | W. Yu, Ch. Zhu, Z. Li, Zh. Hu, Q. Wang, H. Ji, and M. Jiang. A survey of knowledge-enhanced text generation. ACM Computing Surveys, 54:1--38, 1 2022. [ bib | DOI | http ] |
[2] | M. Bayer, MA. Kaufhold, B. Buchhold, M. Keller, J. Dallmeyer, and Ch. Reuter. Data augmentation in natural language processing: a novel text generation approach for long and short text classifiers. International Journal of Machine Learning and Cybernetics, 14:135--150, 1 2023. [ bib | DOI ] |
[3] | Sh. Prabhumoye, A. W. Black, and R. Salakhutdinov. Exploring controllable text generation techniques. pages 1--14. International Committee on Computational Linguistics, 2020. [ bib | DOI | http ] |
[4] | A. BELZ. Automatic generation of weather forecast texts using comprehensive probabilistic generation-space models. Natural Language Engineering, 14:431--455, 10 2008. [ bib | DOI | http ] |
[5] | A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural text degeneration. CEUR Workshop Proceedings, 2540, 2019. [ bib | http ] |
[6] | W. Kool, H. van Hoof, and M. Welling. Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. 3 2019. [ bib | http ] |
[7] | S. Zarrie, H. Voigt, and S. Schüz. Decoding methods in neural language generation: A survey. Information, 12:355, 8 2021. [ bib | DOI | http ] |
[8] | H. Hayashi. Neural aspect-based text generation, dissertation, carnegie mellon university. Technical report, Dissertation, Carnegie Mellon University, 2021. [ bib ] |
[9] | P. Sun, L. Wu, K. Zhang, Y. Su, and M. Wang. An unsupervised aspect-aware recommendation model with explanation text generation. ACM Transactions on Information Systems, 40:1--29, 7 2022. [ bib | DOI | http ] |
[10] | I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, Sh. Ozair, A. Courville, and Y. Bengio. Generative adversarial networks. 6 2014. [ bib | http ] |
[11] | M. Mirza and S. Osindero. Conditional generative adversarial nets. 11 2014. [ bib | http ] |
[12] | K. Wang and X. Wan. Sentigan: Generating sentimental texts via mixture adversarial networks. pages 4446--4452. International Joint Conferences on Artificial Intelligence Organization, 7 2018. [ bib | DOI | http ] |
[13] | A. Aggarwal, M. Mittal, and G. Battineni. Generative adversarial network: An overview of theory and applications. International Journal of Information Management Data Insights, 1:100004, 4 2021. [ bib | DOI | http ] |
[14] | M. R. Pavan Kumar and P. Jayagopal. Generative adversarial networks: A survey on applications and challenges. International Journal of Multimedia Information Retrieval, 10:1--24, 3 2021. [ bib | DOI | http ] |
[15] | T. Iqbal and Sh. Qureshi. The survey: Text generation models in deep learning. Journal of King Saud University - Computer and Information Sciences, 34:2515--2528, 4 2020. [ bib | DOI | http ] |
[16] | D. Saxena and J. Cao. Generative adversarial networks (gans): Challenges, solutions, and future directions. ACM Computing Surveys, 54:1--42, 6 2021. [ bib | DOI | http ] |
[17] | B. Ghosh, I. K. Dutta, M. Totaro, and M. Bayoumi. A survey on the progression and performance of generative adversarial networks. pages 1--8. IEEE, 7 2020. [ bib | DOI | http ] |
[18] | G. H. de Rosa and J. P. Papa. A survey on text generation using generative adversarial networks. Pattern Recognition, 119:108098, 11 2021. [ bib | DOI | http ] |
[19] | T. Zhao, G. Li, Y. Song, Y. Wang, Y. Chen, and J. Yang. A multi-scenario text generation method based on meta reinforcement learning. Pattern Recognition Letters, 165:47--54, 1 2023. [ bib | DOI ] |
[20] | D. M. Blei, A. Y. Ng, and M. I Jordan. Latent dirichlet allocation. Journal of machine learning research, 3:993--1022, 2003. [ bib | http ] |
[21] | M. Shams and A. Baraani-Dastjerdi. Enriched lda (elda): Combination of latent dirichlet allocation with word co-occurrence analysis for aspect extraction. Expert Systems with Applications, 80:136--146, 9 2017. [ bib | DOI | http ] |
[22] | S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9:1735--1780, 11 1997. [ bib | DOI | http ] |
[23] | M. Shams, N. Khoshavi, and A. Baraani-Dastjerdi. Lisa: Language-independent method for aspect-based sentiment analysis. IEEE Access, 8:31034--31044, 2020. [ bib | DOI | http ] |
[24] | Zh. Chen and B. Liu. Topic modeling using topics from many domains, lifelong learning and big data. volume 32, pages 703--711. Proceedings of the 31st International Conference on Machine Learning - ICML '14, 2014. [ bib ] |
[25] | J. Devlin, M. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. pages 4171--4186. Association for Computational Linguistics, 10 2019. [ bib | DOI | http ] |
[26] | M. Farahani, M. Gharachorloo, M. Farahani, and M. Manthouri. Parsbert: Transformer-based model for persian language understanding. Neural Processing Letters, 53:3831--3847, 12 2021. [ bib | DOI | http ] |