Document Type : Research Article
Authors
Department of ICT, Malek-Ashtar University of Technology, Tehran, Iran.
Abstract
Keywords
Main Subjects
[1] | Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Advances in Cryptology--ASIACRYPT 2011: 17th International Conference on the Theory and Application of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings 17, pages 1--20. Springer, 2021. [ bib | DOI ] |
[2] | G. R. Moghissi and A. Payandeh. Using Progressive Success Probabilities for Sound-pruned Enumerations in BKZ Algorithm. International Journal of Computer Network and Information Security, 11(9):10--24, 2018. [ bib | DOI ] |
[3] | Y. Aono, Y. Wang, T. Hayashi, and T. Takagi. Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator. In Advances in Cryptology--EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I 35, pages 789--819. Springer, 2016. [ bib | DOI ] |
[4] | M. Haque and M. O. Rahman. Analyzing progressive-bkz lattice reduction algorithm. International Journal of Computer Network and Information Security, 11(1):40--46, 2019. [ bib | DOI ] |
[5] | P. Schmidt. Fully homomorphic encryption: Overview and cryptanalysis. Dortmund: Technische Universität Dortmund, 2011. [ bib | DOI ] |
[6] | N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning. In Advances in Cryptology--EUROCRYPT 2010: 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30--June 3, 2010. Proceedings 29, pages 257--278. Springer, 2010. [ bib | DOI ] |
[7] | S. Bai, D. Stehlé, and W. Wen. Measuring, simulating and exploiting the head concavity phenomenon in BKZ. In Advances in Cryptology--ASIACRYPT 2018: 24th International Conference on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2--6, 2018, Proceedings, Part I 24, pages 369--404. Springer, 2018. [ bib | DOI ] |
[8] | C. P. Schnorr. Lattice reduction by random sampling and birthday methods. In STACS 2003: 20th Annual Symposium on Theoretical Aspects of Computer Science Berlin, Germany, February 27--March 1, 2003 Proceedings 20, pages 145--156. Springer, 2003. [ bib | DOI ] |
[9] | J. Buchmann and C. Ludwig. Practical lattice basis sampling reduction. In Algorithmic Number Theory: 7th International Symposium, ANTS-VII, Berlin, Germany, July 23-28, 2006. Proceedings 7, pages 222--237. Springer, 2006. [ bib | DOI ] |
[10] | P. Q. Nguyen and V. Brigitte. The LLL Algorithm: survey and application. Springer, 2020. [ bib ] |
[11] | G. R. Moghissi and A. Payandeh. Better Sampling Method of Enumeration Solution for BKZ-Simulation. ISeCure, 13(2), 2021. [ bib | DOI ] |
[12] | G. R. Moghissi and A. Payandeh. Rejecting Claimed Speedup of 2β/2 in Extreme Pruning and Revising BKZ 2.0 for Better Speedup. Journal of Computing and Security, 8(1):65--91, 2021. [ bib | DOI ] |
[13] | G. R. Moghissi and A. Payandeh. Optimal bounding function for GNR-enumeration. International Journal of Mathematical Sciences and Computing (IJMSC), 8(1):1--17, 2022. [ bib | DOI ] |
[14] | G. R. Moghissi and A. Payandeh. A parallel evolutionary search for shortest vector problem. International Journal of Information Technology and Computer Science, 2019. [ bib | DOI ] |
[15] | C. A. Rogers. The number of lattice points in a set. Proceedings of the London Mathematical Society, 3(2):305--320, 1956. [ bib | DOI ] |
[16] | M. R. Albrecht, B. R. Curtis, A. Deo, A. Davidson, R. Player, E. W. Postlethwaite, F. Virdia, and T. Wunderer. Estimate all the {LWE, NTRU} schemes! In Security and Cryptography for Networks: 11th International Conference, SCN 2018, Amalfi, Italy, September 5--7, 2018, Proceedings 11, pages 351--367. Springer, 2018. [ bib | DOI ] |
[17] | E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange-A New Hope. In USENIX security symposium, 2016. [ bib | DOI ] |
[18] | A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest neighbor searching with applications to lattice sieving. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages 10--24. SIAM, 2016. [ bib | DOI ] |
[19] | T. Laarhoven. Search problems in cryptography: from fingerprinting to lattice sieving. 2016. [ bib | DOI ] |
[20] | M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with errors. Journal of Mathematical Cryptology, 9(3):169--203, 2015. [ bib | DOI ] |
[21] | P. Q. Nguyen. Hermite’s constant and lattice algorithms. In The LLL Algorithm: Survey and Applications, pages 19--69. Springer, 2009. [ bib ] |
[22] | R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In Topics in Cryptology--CT-RSA 2011: The Cryptographers’ Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings, pages 319--339. Springer, 2011. [ bib | DOI ] |
[23] | Y. Chen. Réduction de réseau et sécurité concrete du chiffrement completement homomorphe. Ph.D. thesis, Paris 7, 2013. [ bib ] |
[24] | Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Advances in Cryptology--ASIACRYPT 2011: 17th International Conference on the Theory and Application of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings 17, pages 1--20. Springer, 2011. [ bib | DOI ] |
[25] | J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, W. Whyte, and Z. Zhang. Choosing parameters for NTRUEncrypt. In Topics in Cryptology--CT-RSA 2017: The Cryptographers’ Track at the RSA Conference 2017, San Francisco, CA, USA, February 14--17, 2017, Proceedings, pages 3--10. Springer, 2017. [ bib | DOI ] |
[26] | V. Shoup. NTL: A Library for doing Number Theory. https://libntl.org/, Date Accessed: 2022. [ bib ] |
[27] | TU Darmstadt Lattice Challenge. SVP Challenge. https://www.latticechallenge.org/svp-challenge/, Date Accessed: 2022. [ bib ] |