Document Type : Research Article
Author
Shahid Sattari Aeronautical University of Science and Technology, Tehran, Iran.
Abstract
Keywords
[1] | V. K. Patel, V. J. Savsani, and M. A. Tawhid. Metaheuristic methods. In Thermal System Optimization, pages 7--32. Springer, 2019. [ bib ] |
[2] | M. Rostami, K. Berahmand, and S. Forouzandeh. A novel community detection based genetic algorithm for feature selection. IEEE Access, 8(1):1--27, 2021. [ bib | DOI ] |
[3] | M. Rostami, K. Berahmand, and S. Forouzandeh. Crossover and Mutation Operators of Genetic Algorithms. International Journal of Machine Learning and Computing, 7(1):9--12, 2017. [ bib | DOI ] |
[4] | A. J. Umbarkar and P. D. Sheth. CROSSOVER OPERATORS IN GENETIC ALGORITHMS: A REVIEW. ICTACT Journal on Soft Computing, 6(1), 2015. [ bib | DOI ] |
[5] | M. Y. Orong, A. M. Sison, and R. P. Medina. A new crossover mechanism for genetic algorithm with rank-based selection method. In 2018 5th International Conference on Business and Industrial Research (ICBIR), pages 83--88. IEEE, 2018. [ bib | DOI ] |
[6] | M. Sain, Y. J. Kang, and H. J. Lee. An introduction to a novel crossover operator for real-value encoded genetic algorithm: Gaussian crossover operator. In 2018 International Interdisciplinary PhD Workshop (IIPhDW), pages 85--90. IEEE, 2018. [ bib | DOI ] |
[7] | M. Z. Ali, N. H. Awad, P. N. Suganthan, A. M. Shatnawi, and R. G. Reynolds. An improved class of real-coded Genetic Algorithms for numerical optimization. Neurocomputing, 275:155--166, 2018. [ bib | DOI ] |
[8] | R. Cheng, Y. Jin, K. Narukawa, and B.Sendhoff. A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling. IEEE Transactions on Evolutionary Computation, 19(6):838 -- 856, 2015. [ bib | DOI ] |
[9] | K. Deb and R. B. Agrawal. Simulated Binary Crossover for Continuous Search Space. Complex Systems, 9(3):115--148, 2000. [ bib | DOI ] |
[10] | Y. Ding, Y.Wu, C. Huang, S. Tang, Y. Yang, L. Wei, Y. Zhuang, and Q. Tian. Learning To Learn by Jointly Optimizing Neural Architecture and Weights. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 129--138, 2022. [ bib | DOI ] |
[11] | M. Li and X. Yao. Quality Evaluation of Solution Sets in Multiobjective Optimisation: A Survey. ACM Computing Surveys (CSUR), 52(2):1--38, 2019. [ bib | DOI ] |
[12] | M. Fayyaz, H. Vahdat-nejad, and M. Kherad. Trust Inference in Social Networks by Combination of Neural Network and Genetic Algorithm. Tabriz Journal of Electrical Engineering, 50(1):331--340, 2020. [ bib | DOI ] |
[13] | H. Ismkhan. Novel Diversity-Preservative Strategies for Genetic Algorithms and Its Application for Large-Scale Optimization. TABRIZ JOURNAL OF ELECTRICAL ENGINEERING, 48(2):467--479, 2018. [ bib | DOI ] |
[14] | B. Zamani Dehkordi and Z. Nekouei. Multi Objective Genetic Algorithm Based Ensemble Classifier Using Classification Error, Sparsity, Diversity and Density Criterion. TABRIZ JOURNAL OF ELECTRICAL ENGINEERING, 47(4):1479--1487, 2018. [ bib | DOI ] |