Document Type : Research Article
Authors
Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
Abstract
Keywords
[1] | M. Sain, Y. J. Kang, and H. J. Lee. Survey on security in Internet of Things: State of the art and challenges. In 2017 19th International Conference on Advanced Communication Technology (ICACT), pages 699--704. IEEE, 2017. [ bib | DOI ] |
[2] | G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz. A survey on 5G networks for the Internet of Things: Communication technologies and challenges. IEEE Access, 6:3619--3647, 2017. [ bib | DOI ] |
[3] | J. Chen, K. Hu, Q. Wang, Y. Sun, Z. Shi, and S. He. Narrowband Internet of Things: Implementations and Applications. IEEE Internet of Things Journal, 4(6):2309--2314, 2017. [ bib | DOI ] |
[4] | A. Lavric, A. I. Petrariu, and V. Popa. Long Range SigFox Communication Protocol Scalability Analysis Under Large-Scale, High-Density Conditions. IEEE Access, 7:35816 -- 35825, 2019. [ bib | DOI ] |
[5] | P. Gkotsiopoulos, D. Zorbas, and C. Douligeris. Performance Determinants in LoRa Networks: A Literature Review. IEEE Communications Surveys & Tutorials, 23(3):1721 -- 1758, 2021. [ bib | DOI ] |
[6] | U. Raza, P. Kulkarni, and M. Sooriyabandara. Low Power Wide Area Networks: An Overview. IEEE Communications Surveys & Tutorials, 19(2):855 -- 873, 2017. [ bib | DOI ] |
[7] | F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and T. Watteyne. Understanding the Limits of LoRaWAN. IEEE Communications Magazine, 55(9):34 -- 40, 2017. [ bib | DOI ] |
[8] | J. Haxhibeqiri, F. Van den Abeele, I. Moerman, and J. Hoebeke. LoRa Scalability: A Simulation Model Based on Interference Measurements. Sensors, 17(6), 2017. [ bib | DOI ] |
[9] | A. Lavric and V. Popa. Performance Evaluation of LoRaWAN Communication Scalability in Large-Scale Wireless Sensor Networks. Wireless Communications and Mobile Computing, 2018, 2018. [ bib | DOI ] |
[10] | C. Pham, A. Bounceur, L. Clavier, U. Noreen, and M. Ehsan. Radio channel access challenges in LoRa low-power wide-area networks. LPWAN Technologies for IoT and M2M Applications, 2020:65--102, 2020. [ bib | DOI ] |
[11] | Y. Jiang, L. Peng, A. Hu, S. Wang, Y. Huang, and L. Zhang. Physical layer identification of LoRa devices using constellation trace figure. EURASIP Journal on Wireless Communications and Networking, 2019(1):1--11, 2019. [ bib | DOI ] |
[12] | A. Mahmood, E. Sisinni, L. Guntupalli, R. Rondón, S. A. Hassan, and M. Gidlund. Scalability Analysis of a LoRa Network Under Imperfect Orthogonality. IEEE Transactions on Industrial Informatics, 15(3):1425 -- 1436, 2019. [ bib | DOI ] |
[13] | A. Waret, M. Kaneko, A. Guitton, and N. El Rachkidy. LoRa Throughput Analysis With Imperfect Spreading Factor Orthogonality. IEEE Wireless Communications Letters, 8(2):408 -- 411, 2019. [ bib | DOI ] |
[14] | D. Croce, M. Gucciardo, I. Tinnirello, D. Garlisi, and S. Mangione. Impact of Spreading Factor Imperfect Orthogonality in LoRa Communications. In International Tyrrhenian Workshop on Digital Communication, pages 165--179. Springer, 2017. [ bib | DOI ] |
[15] | M. C. Bor, U. Roedig, T. Voigt, and J. M. Alonso. Do LoRa Low-Power Wide-Area Networks Scale? In Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, page 59–67. ACM, 2016. [ bib | DOI ] |
[16] | J. Lim and Y. Han. Spreading Factor Allocation for Massive Connectivity in LoRa Systems. IEEE Communications Letters, 22(4):800 -- 803, 2018. [ bib | DOI ] |
[17] | F. Van den Abeele, J. Haxhibeqiri, I. Moerman, and J. Hoebeke. Scalability Analysis of Large-Scale LoRaWAN Networks in ns-3. IEEE Internet of Things Journal, 4(6):2186 -- 2198, 2017. [ bib | DOI ] |
[18] | O. Georgiou and U. Raza. Low Power Wide Area Network Analysis: Can LoRa Scale? IEEE Wireless Communications Letters, 6(2):162 -- 165, 2017. [ bib | DOI ] |
[19] | V. Di Vincenzo, M. Heusse, and B. Tourancheau. Improving Downlink Scalability in LoRaWAN. In ICC 2019 - 2019 IEEE International Conference on Communications (ICC), pages 1--7. IEEE, 2019. [ bib | DOI ] |
[20] | C. Kim, J. Kim, J. Kwak, K. Kim, and W. Seok. Occupancy-balancing downlink transmission for enhancing scalability of LoRa networks. International Journal of Distributed Sensor Networks, 16(12), 2020. [ bib | DOI ] |
[21] | V. Di Vincenzo, M. Heusse, and B. Tourancheau. EWS: Exponential Windowing Scheme to Improve LoRa Scalability. In IEEE Transactions on Industrial Informatics, pages 1--7. IEEE, 2019. [ bib | DOI ] |
[22] | Q. Cai and J. Lin. Improving the Scalability of LoRa Networks Through Dynamical Parameter Set Selection. In China Conference on Wireless Sensor Networks, pages 3--18. Springer, 2019. [ bib | DOI ] |
[23] | T. Polonelli, D. Brunelli, A. Marzocchi, and L. Benini. Slotted ALOHA on LoRaWAN-Design, Analysis, and Deployment. Sensors, 19(4):838, 2019. [ bib | DOI ] |
[24] | B. Reynders, Q. Wang, P. Tuset-Peiro, X. Vilajosana, and S. Pollin. Improving Reliability and Scalability of LoRaWANs Through Lightweight Scheduling. IEEE Internet of Things Journal, 5(3):1830 -- 1842, 2018. [ bib | DOI ] |
[25] | J. Haxhibeqiri, I. Moerman, and J. Hoebeke. Low Overhead Scheduling of LoRa Transmissions for Improved Scalability. IEEE Internet of Things Journal, 6(2):3097 -- 3109, 2018. [ bib | DOI ] |
[26] | A. Lavric and V. Popa. Performance Evaluation of LoRaWAN Communication Scalability in Large-Scale Wireless Sensor Networks. Wireless Communications and Mobile Computing, 2018, 2018. [ bib | DOI ] |
[27] | M. O. Ojo, D. Adami, and S. Giordano. Experimental Evaluation of a LoRa Wildlife Monitoring Network in a Forest Vegetation Area. Future Internet, 13(5), 2021. [ bib | DOI ] |
[28] | S. Mohammadi and G. Farahani. Scalability Analysis of a LoRa Network Under Co-SF and Inter-SF Interference in Large-scale IoT Applications. In 2021 5th International Conference on Internet of Things and Applications (IoT), pages 1--6. IEEE, 2021. [ bib | DOI ] |
[29] | M. Aljuaid and H. Yanikomeroglu. Investigating the Gaussian Convergence of the Distribution of the Aggregate Interference Power in Large Wireless Networks. IEEE Transactions on Vehicular Technology, 59(9):4418 -- 4424, 2010. [ bib | DOI ] |
[30] | M. Haenggi and R. K. Ganti. Interference in large wireless networks. Now Publishers Inc, 2009. [ bib ] |
[31] | R. G. Gallager. Discrete Stochastic Processes. OpenCourseWare: Massachusetts Institute of Technology, 2011. [ bib | DOI ] |
[32] | R. W. Heath, M. Kountouris, and T. Bai. Modeling Heterogeneous Network Interference Using Poisson Point Processes. IEEE Transactions on Signal Processing, 61(16):4114 -- 4126, 2013. [ bib | DOI ] |
[33] | Semtech. LoRa modulation basics, AN1200.22. 2015. [ bib | DOI ] |
[34] | D. Croce, M. Gucciardo, S. Mangione, G. Santaromita, and I. Tinnirello. Impact of LoRa Imperfect Orthogonality: Analysis of Link-Level Performance. IEEE Communications Letters, 22(4):796 -- 799, 2018. [ bib | DOI ] |
[35] | A. Hoeller, R. Souza Demo, O. L. A. López, H. Alves, M. de Noronha Neto, and G. Brante. Analysis and Performance Optimization of LoRa Networks With Time and Antenna Diversity. IEEE Access, 6:32820 -- 32829, 2018. [ bib | DOI ] |
[36] | A. Farhad, D. Kim, and J. Pyun. Resource Allocation to Massive Internet of Things in LoRaWANs. Sensors, 20(9):2645, 2020. [ bib | DOI ] |