Scalability Analysis of a LoRa Network Under Inter-SF and Co-SF Interference with Poisson Point Process Model

Document Type : Research Article


Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.


The scalability of a single gateway LoRa network depends on different parameters such as interference and noise. The scheme of spreading factor allocation can control the interference and noise. This article analyzes the impact of the interference of the concurrent transmission with the same spreading factor (co-SF) and different spreading factor (inter-SF) on the scalability of the LoRa network. The interference has been modeled as the Poisson point process. The proposed scheme considers the success probabilities and device density (SPD) in each area in determining the width and boundaries of SF areas. The simulation results showed that the proposed SPD scheme had improved 13.20% over the EIB method in terms of success probability under joint co-SF and inter-SF interference. Also, the coverage probability under the joint impact of cumulative co-SF and inter-SF interference of the SPD and EIB methods is compared in the clean and noisy conditions. The probability of coverage in EIB degrades more than SPD as the scalability increases. Also, the uplink performance of the proposed SPD scheme has been studied in the absence of any interference under AWGN. SPD has a higher success probability under AWGN than EIB.


[1] M. Sain, Y. J. Kang, and H. J. Lee. Survey on security in Internet of Things: State of the art and challenges. In 2017 19th International Conference on Advanced Communication Technology (ICACT), pages 699--704. IEEE, 2017. [ bib | DOI ]
[2] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz. A survey on 5G networks for the Internet of Things: Communication technologies and challenges. IEEE Access, 6:3619--3647, 2017. [ bib | DOI ]
[3] J. Chen, K. Hu, Q. Wang, Y. Sun, Z. Shi, and S. He. Narrowband Internet of Things: Implementations and Applications. IEEE Internet of Things Journal, 4(6):2309--2314, 2017. [ bib | DOI ]
[4] A. Lavric, A. I. Petrariu, and V. Popa. Long Range SigFox Communication Protocol Scalability Analysis Under Large-Scale, High-Density Conditions. IEEE Access, 7:35816 -- 35825, 2019. [ bib | DOI ]
[5] P. Gkotsiopoulos, D. Zorbas, and C. Douligeris. Performance Determinants in LoRa Networks: A Literature Review. IEEE Communications Surveys & Tutorials, 23(3):1721 -- 1758, 2021. [ bib | DOI ]
[6] U. Raza, P. Kulkarni, and M. Sooriyabandara. Low Power Wide Area Networks: An Overview. IEEE Communications Surveys & Tutorials, 19(2):855 -- 873, 2017. [ bib | DOI ]
[7] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and T. Watteyne. Understanding the Limits of LoRaWAN. IEEE Communications Magazine, 55(9):34 -- 40, 2017. [ bib | DOI ]
[8] J. Haxhibeqiri, F. Van den Abeele, I. Moerman, and J. Hoebeke. LoRa Scalability: A Simulation Model Based on Interference Measurements. Sensors, 17(6), 2017. [ bib | DOI ]
[9] A. Lavric and V. Popa. Performance Evaluation of LoRaWAN Communication Scalability in Large-Scale Wireless Sensor Networks. Wireless Communications and Mobile Computing, 2018, 2018. [ bib | DOI ]
[10] C. Pham, A. Bounceur, L. Clavier, U. Noreen, and M. Ehsan. Radio channel access challenges in LoRa low-power wide-area networks. LPWAN Technologies for IoT and M2M Applications, 2020:65--102, 2020. [ bib | DOI ]
[11] Y. Jiang, L. Peng, A. Hu, S. Wang, Y. Huang, and L. Zhang. Physical layer identification of LoRa devices using constellation trace figure. EURASIP Journal on Wireless Communications and Networking, 2019(1):1--11, 2019. [ bib | DOI ]
[12] A. Mahmood, E. Sisinni, L. Guntupalli, R. Rondón, S. A. Hassan, and M. Gidlund. Scalability Analysis of a LoRa Network Under Imperfect Orthogonality. IEEE Transactions on Industrial Informatics, 15(3):1425 -- 1436, 2019. [ bib | DOI ]
[13] A. Waret, M. Kaneko, A. Guitton, and N. El Rachkidy. LoRa Throughput Analysis With Imperfect Spreading Factor Orthogonality. IEEE Wireless Communications Letters, 8(2):408 -- 411, 2019. [ bib | DOI ]
[14] D. Croce, M. Gucciardo, I. Tinnirello, D. Garlisi, and S. Mangione. Impact of Spreading Factor Imperfect Orthogonality in LoRa Communications. In International Tyrrhenian Workshop on Digital Communication, pages 165--179. Springer, 2017. [ bib | DOI ]
[15] M. C. Bor, U. Roedig, T. Voigt, and J. M. Alonso. Do LoRa Low-Power Wide-Area Networks Scale? In Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, page 59–67. ACM, 2016. [ bib | DOI ]
[16] J. Lim and Y. Han. Spreading Factor Allocation for Massive Connectivity in LoRa Systems. IEEE Communications Letters, 22(4):800 -- 803, 2018. [ bib | DOI ]
[17] F. Van den Abeele, J. Haxhibeqiri, I. Moerman, and J. Hoebeke. Scalability Analysis of Large-Scale LoRaWAN Networks in ns-3. IEEE Internet of Things Journal, 4(6):2186 -- 2198, 2017. [ bib | DOI ]
[18] O. Georgiou and U. Raza. Low Power Wide Area Network Analysis: Can LoRa Scale? IEEE Wireless Communications Letters, 6(2):162 -- 165, 2017. [ bib | DOI ]
[19] V. Di Vincenzo, M. Heusse, and B. Tourancheau. Improving Downlink Scalability in LoRaWAN. In ICC 2019 - 2019 IEEE International Conference on Communications (ICC), pages 1--7. IEEE, 2019. [ bib | DOI ]
[20] C. Kim, J. Kim, J. Kwak, K. Kim, and W. Seok. Occupancy-balancing downlink transmission for enhancing scalability of LoRa networks. International Journal of Distributed Sensor Networks, 16(12), 2020. [ bib | DOI ]
[21] V. Di Vincenzo, M. Heusse, and B. Tourancheau. EWS: Exponential Windowing Scheme to Improve LoRa Scalability. In IEEE Transactions on Industrial Informatics, pages 1--7. IEEE, 2019. [ bib | DOI ]
[22] Q. Cai and J. Lin. Improving the Scalability of LoRa Networks Through Dynamical Parameter Set Selection. In China Conference on Wireless Sensor Networks, pages 3--18. Springer, 2019. [ bib | DOI ]
[23] T. Polonelli, D. Brunelli, A. Marzocchi, and L. Benini. Slotted ALOHA on LoRaWAN-Design, Analysis, and Deployment. Sensors, 19(4):838, 2019. [ bib | DOI ]
[24] B. Reynders, Q. Wang, P. Tuset-Peiro, X. Vilajosana, and S. Pollin. Improving Reliability and Scalability of LoRaWANs Through Lightweight Scheduling. IEEE Internet of Things Journal, 5(3):1830 -- 1842, 2018. [ bib | DOI ]
[25] J. Haxhibeqiri, I. Moerman, and J. Hoebeke. Low Overhead Scheduling of LoRa Transmissions for Improved Scalability. IEEE Internet of Things Journal, 6(2):3097 -- 3109, 2018. [ bib | DOI ]
[26] A. Lavric and V. Popa. Performance Evaluation of LoRaWAN Communication Scalability in Large-Scale Wireless Sensor Networks. Wireless Communications and Mobile Computing, 2018, 2018. [ bib | DOI ]
[27] M. O. Ojo, D. Adami, and S. Giordano. Experimental Evaluation of a LoRa Wildlife Monitoring Network in a Forest Vegetation Area. Future Internet, 13(5), 2021. [ bib | DOI ]
[28] S. Mohammadi and G. Farahani. Scalability Analysis of a LoRa Network Under Co-SF and Inter-SF Interference in Large-scale IoT Applications. In 2021 5th International Conference on Internet of Things and Applications (IoT), pages 1--6. IEEE, 2021. [ bib | DOI ]
[29] M. Aljuaid and H. Yanikomeroglu. Investigating the Gaussian Convergence of the Distribution of the Aggregate Interference Power in Large Wireless Networks. IEEE Transactions on Vehicular Technology, 59(9):4418 -- 4424, 2010. [ bib | DOI ]
[30] M. Haenggi and R. K. Ganti. Interference in large wireless networks. Now Publishers Inc, 2009. [ bib ]
[31] R. G. Gallager. Discrete Stochastic Processes. OpenCourseWare: Massachusetts Institute of Technology, 2011. [ bib | DOI ]
[32] R. W. Heath, M. Kountouris, and T. Bai. Modeling Heterogeneous Network Interference Using Poisson Point Processes. IEEE Transactions on Signal Processing, 61(16):4114 -- 4126, 2013. [ bib | DOI ]
[33] Semtech. LoRa modulation basics, AN1200.22. 2015. [ bib | DOI ]
[34] D. Croce, M. Gucciardo, S. Mangione, G. Santaromita, and I. Tinnirello. Impact of LoRa Imperfect Orthogonality: Analysis of Link-Level Performance. IEEE Communications Letters, 22(4):796 -- 799, 2018. [ bib | DOI ]
[35] A. Hoeller, R. Souza Demo, O. L. A. López, H. Alves, M. de Noronha Neto, and G. Brante. Analysis and Performance Optimization of LoRa Networks With Time and Antenna Diversity. IEEE Access, 6:32820 -- 32829, 2018. [ bib | DOI ]
[36] A. Farhad, D. Kim, and J. Pyun. Resource Allocation to Massive Internet of Things in LoRaWANs. Sensors, 20(9):2645, 2020. [ bib | DOI ]