Document Type : Research Article


Computer Engineering Group, Faculty of Engineering, Arak University, Sardasht, Arak, Iran.



In this paper, we focus to find desired node position in indoor environments using a sequence of observations and user movement records. For this purpose, we first record the user's movements in indoor environments by defining a set of states and several matrices, which are Viterbi inputs. To record the fingerprints of the environment, we move across the entire coordinates of the building to collect and record the fingerprints of different places. In the online phase, we use the Weighted K-Nearest Neighbors (WKNN) algorithm in parallel to check the accuracy of both WKNN and Viterbi algorithms and to correct the WKNN behavior by Viterbi. During this phase, an experimental node is inserted into the environment and moves in the desired direction by determining the destination. The proposed method calculates the current location of the node and its most probable location in the next step. The results of the implementation and testing of the proposed algorithm in the Faculty of Engineering, Arak University, show the optimal performance of the proposed idea for predicting the location and path of the node.


Main Subjects

[1] Z. Turgut, G. Z. G. Aydin, and A. Sertbas. Indoor localization techniques for smart building environment. Procedia Computer Science, 83:1176--1181, 2016. [ bib | DOI ]
[2] F. Zafari, A. Gkelias, and K. K. Leung. A Survey of Indoor Localization Systems and Technologies. IEEE Communications Surveys & Tutorials, 21(3):2568--2599, 2019. [ bib | DOI ]
[3] J. Xiong and K. Jamieson. ArrayTrack: A Fine-Grained Indoor Location System. In 10th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 13), pages 71--84. Springer, 2013. [ bib | DOI ]
[4] S. Kumar, S. Gil, D. Katabi, and D. Rus. Accurate indoor localization with zero start-up cost. In Proceedings of the 20th annual international conference on Mobile computing and networking, pages 483--494. ACM, 2014. [ bib | DOI ]
[5] S. Lee, S. Chae, and D. Han. ILoA: Indoor Localization Using Augmented Vector of Geomagnetic Field. IEEE Access, 8(3):184242--184255, 2020. [ bib | DOI ]
[6] W. Guan, S. Chen, S. Wen, Z. Tan, H. Song, and Wenyuan Hou. High-Accuracy Robot Indoor Localization Scheme Based on Robot Operating System Using Visible Light Positioning. IEEE Photonics Journal, 12(2):1--16, 2020. [ bib | DOI ]
[7] F. Gu, S. Valaee, K. Khoshelham, J. Shang, and R. Zhang. Landmark graph-based indoor localization. IEEE Internet of Things Journal, 7(9):8343 -- 8355, 2020. [ bib | DOI ]
[8] B. Mahmood, S. Han, and D. Lee. BIM-Based Registration and Localization of 3D Point Clouds of Indoor Scenes Using Geometric Features for Augmented Reality. Remote Sensing, 12(4), 2020. [ bib | DOI ]
[9] H. Zhang, K. Liu, F. Jin, L. Feng, V. Lee, and J. Ng. A scalable indoor localization algorithm based on distance fitting and fingerprint mapping in Wi-Fi environments. Neural Computing and Applications, 32(9):5131--5145, 2020. [ bib | DOI ]
[10] H. Ghaffarian. Reducing Search Area in Indoor Localization Applications. Wireless Personal Communicationss, 117(2):1243--1258, 2021. [ bib | DOI ]
[11] V. Guimarães, L. Castro, S. Carneiro, M. Monteiro, T. Rocha, M. Barandas, M. Machado, M. Vasconcelos, H. Gamboa, and D. Elias. A motion tracking solution for indoor localization using smartphones. In 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 1--8. IEEE, 2016. [ bib | DOI ]
[12] H. Lee, M. Wicke, B. Kusy, and L. Guibas. Localization of mobile users using trajectory matching. In Proceedings of the first ACM international workshop on Mobile entity localization and tracking in GPS-less environment, page 123–128. ACM, 2008. [ bib | DOI ]
[13] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen. Zee: Zero-effort crowdsourcing for indoor localization. In Proceedings of the 18th annual international conference on Mobile computing and networking, page 293–304. ACM, 2012. [ bib | DOI ]
[14] W. Stallings. Wireless Communications and Networks. Pearson College, 2004. [ bib ]
[15] A. Girgensohn, M. Patel, and J. T. Biehl. Radio-frequency-based indoor-localization techniques for enhancing Internet-of-Things applications. Personal and Ubiquitous Computing, pages 1--17, 2020. [ bib | DOI ]
[16] K. F. P. Wye, S. M. M. S. Zakaria, L. M. Kamarudin, A. Zakaria, and N. B. Ahmad. Recent Advancements in Radio Frequency based Indoor Localization Techniques. In Journal of Physics: Conference Series. IOP Publishing, 2021. [ bib | DOI ]
[17] S. Tiku, S. Pasricha, B. Notaros, and Q. Han. A Hidden Markov Model based smartphone heterogeneity resilient portable indoor localization framework. Journal of Systems Architecture, 108:101806, 2020. [ bib | DOI ]
[18] G. Jekabsons and V. Zuravlyov. Refining Wi-Fi based indoor positioning. In Proceedings of 4th International Scientific Conference Applied Information and Communication Technologies (AICT), Jelgava, Latvia, pages 87--95, 2010. [ bib | DOI ]