Model-Driven Software Engineering: A Bibliometric Analysis

Document Type : Research Article

Authors

1 MDSE Research Group, Dept. of Software Engineering, University of Isfahan, Isfahan, Iran.

2 Department of Library and Information Science, Payame Noor University, Iran.

Abstract

Model-Driven Software Engineering (MDSE) is a software development methodology that reduces the cost and production time of the final product by concentratingon a higher level of abstraction. The main focus of MDSE is to generate automated code by applying different types of transformations to high-level models. The effectiveness of MDSE has been proved in different domains for solving various types of problems.
This research provides the bibliometric analysis of research in the field of MDSE. The population of the study consists of all MDSE articles indexed in the Web of Science database in ten years from 2010 to 2019. The work aims to identify the volume of scientific production, the most influential countries, universities, authors, and journals, the cooperation network among the countries, universities, and authors, keyword ranking, and Co-word analysis of keywords and titles of the articles. Keyword analysis revealed that Model Transformation and Model Checking are two very important clusters and topics of interest to researchers in this field. The results provide valuable insights that can be used as a guideline by both fresh and experienced researchers for the current state and future trend of MDSE research in different scientific disciplines to establish a baseline beforeinitiating an MDSE research project in the future.

Keywords

Main Subjects


[1] R. France and B. Rumpe. Model-driven development of complex software: A research roadmap. In Future of Software Engineering (FOSE'07), pages 37--54. IEEE, 2007. [ bib | DOI ]
[2] F. Ciccozzi, J. Carlson, P. Pelliccione, and M. Tivoli. Editorial to theme issue on model-driven engineering of component-based software systems. Software & Systems Modeling, 18(1):7--10, 2017. [ bib | DOI ]
[3] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra, J. S. Cuadrado, J. De Lara, I. Ráth, D. Varró, M. Tisi, and J. Cabot. A research roadmap towards achieving scalability in model driven engineering. In Proceedings of the Workshop on Scalability in Model Driven Engineering, pages 1--10, 2013. [ bib | DOI ]
[4] DC. Shcmidt. Guest editor's introduction: Model-driven engineering. IEEE Computer, 39:25--31, 2006. [ bib | DOI ]
[5] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in Practice. Synthesis lectures on software engineering, 2017. [ bib ]
[6] S. Sendall and W. Kozaczynski. Model transformation: The heart and soul of model-driven software development. IEEE software, 20(5):42 -- 45, 2003. [ bib | DOI ]
[7] J. Whittle, J. Hutchinson, and M. Rouncefield. The State of Practice in Model-Driven Engineering. IEEE Software, 31(3):79 -- 85, 2013. [ bib | DOI ]
[8] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empirical assessment of MDE in industry. In Proceedings of the 33rd International Conference on Software Engineering, page 471–480, 2011. [ bib | DOI ]
[9] P. Mohagheghi, W. Gilani, A. Stefanescu, and M. A. Fernandez. An empirical study of the state of the practice and acceptance of model-driven engineering in four industrial cases. Empirical Software Engineering, 18(1):89--116, 2013. [ bib | DOI ]
[10] J. M. Gascueña, E. Navarro, and A. Fernández-Caballero. Model-driven engineering techniques for the development of multi-agent systems. Engineering Applications of Artificial Intelligence, 25(1):159--173, 2012. [ bib | DOI ]
[11] G. Beydoun, G. Low, H. Mouratidis, and B. Henderson-Sellers. A security-aware metamodel for multi-agent systems (MAS). Information and Software Technologye, 51(5):832--845, 2009. [ bib | DOI ]
[12] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg. Towards Model-Driven Provisioning, Deployment, Monitoring, and Adaptation of Multi-cloud Systems. In 2013 IEEE Sixth International Conference on Cloud Computing, pages 887--894. IEEE, 2013. [ bib | DOI ]
[13] M. Almorsy, J. Grundy, and A. S. Ibrahim. Adaptable, model-driven security engineering for SaaS cloud-based applications. Automated Software Engineering, 21(2):187–224, 2014. [ bib | DOI ]
[14] N. Ferry, H. Song, A. Rossini, F. Chauvel, and A. Solberg. CloudMF: Applying MDE to Tame the Complexity of Managing Multi-cloud Applications. In 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, pages 269--277. IEEE, 2014. [ bib | DOI ]
[15] M. Usman, M. Z. Iqbal, and M. U. Khan. A product-line model-driven engineering approach for generating feature-based mobile applications. Journal of Systems and Software, 123:1--32, 2017. [ bib | DOI ]
[16] W. S. El-Kassas, B. A. Abdullah, A. H. Yousef, and A. M. Wahba. Taxonomy of Cross-Platform Mobile Applications Development Approaches. Ain Shams Engineering Journal, 8(2):163--190, 2017. [ bib | DOI ]
[17] D. Akdur, V. Garousi, and O. Demirörs. A survey on modeling and model-driven engineering practices in the embedded software industry. Journal of Systems Architecture, 91:62--82, 2018. [ bib | DOI ]
[18] İ. Özen Çinar. Bibliometric analysis of breast cancer research in the period 2009-2018. International Journal of Nursing Practice, 26(3), 2020. [ bib | DOI ]
[19] J. A. Wallin. Bibliometric Methods: Pitfalls and Possibilities. Basic & clinical pharmacology & toxicology, 97(5):261--275, 2005. [ bib | DOI ]
[20] A. Pritchard. Statistical Bibliography or Bibliometrics? Journal of Documentation, 25(4):348--349, 1969. [ bib | DOI ]
[21] M. Gil, K. Wróbel, J. Montewka, and F. Goerlandt. A bibliometric analysis and systematic review of shipboard Decision Support Systems for accident prevention. Safety Science, 128:104717, 2020. [ bib | DOI ]
[22] A. Kataria, S. Kumar, R. Sureka, and B. Gupta. Forty years of Employee Relations – The International Journal: a bibliometric overview. Employee Relations: The International Journal, 42(6):1205--1230, 2020. [ bib | DOI ]
[23] D. T. Hawkins. Unconventional uses of on-line information retrieval systems: On-line bibliometric studies. Journal of the American Society for Information Science, 28(1):13--18, 1977. [ bib | DOI ]
[24] A. Firdaus, M. F. Ab Razak, A. Feizollah, I. A. T. Hashem, M. Hazim, and N. B. Anuar. The rise of “blockchain”: bibliometric analysis of blockchain study. Scientometrics, 120(3):1289–1331, 2019. [ bib | DOI ]
[25] H. M. Rouzbahani, H. Karimipour, A. Dehghantanha, and R. M. Parizi. Blockchain Applications in Power Systems: A Bibliometric Analysis. In Advances in Information Security, pages 129--145. Springer, 2020. [ bib | DOI ]
[26] M. Kamran, H. U. Khan, W. Nisar, M. Farooq, and S. Rehman. Blockchain and Internet of Things: A bibliometric study. Computers & Electrical Engineering, 81:106525, 2020. [ bib | DOI ]
[27] M. Dabbagh, M. Sookhak, and N. S. Safa. The Evolution of Blockchain: A Bibliometric Study. IEEE Access, 7:19212 -- 19221, 2019. [ bib | DOI ]
[28] L. Zhou, L. Zhang, Y. Zhao, R. Zheng, and K. Song. A scientometric review of blockchain research. Information Systems and e-Business Management, pages 1--31, 2020. [ bib | DOI ]
[29] O. Ramona, M. S. Cristina, and S. Raluca. Bitcoin in the Scientific Literature – A Bibliometric Study. Studies in Business & Economics, 14(3):160 -- 174, 2019. [ bib | DOI ]
[30] I. Merediz-Solà and A. F. Bariviera. A bibliometric analysis of Bitcoin scientific production. Research in International Business and Finance, 50:294--305, 2019. [ bib | DOI ]
[31] S. Zeng, X. Ni, Y. Yuan, and F. Wang. A Bibliometric Analysis of Blockchain Research. In 2018 IEEE intelligent vehicles symposium (IV), pages 102--107. IEEE, 2018. [ bib | DOI ]
[32] Xiaohong Liu, Ruiqing Sun, Shiyun Wang, and Yenchun Jim Wu. The research landscape of big data: a bibliometric analysis. Library Hi Tech, 38(2):367--384, 2020. [ bib | DOI ]
[33] Y. Zhang, Y. Huang, A. L. Porter, G. Zhang, and J. Lu. Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study. Technological Forecasting and Social Change, 146:795--807, 2019. [ bib | DOI ]
[34] G. C. Nobre and E. Tavares. Scientific literature analysis on big data and internet of things applications on circular economy: a bibliometric study. Scientometrics, 111(1):463–492, 2017. [ bib | DOI ]
[35] P. H. Nguyen, M. Kramer, J. Klein, and Y. Le Traon. An extensive systematic review on the Model-Driven Development of secure systems. Information and Software Technology, 68:62--81, 2015. [ bib | DOI ]
[36] O. Masmali and O. Badreddin. Model-driven Engineering of Safety and Security Systems: A Systematic Mapping Study. Software Engineering, 7(2):30--38, 2019. [ bib | DOI ]
[37] P. Mongeon and A. Paul-Hus. The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics, 106(1):213–228, 2016. [ bib | DOI ]
[38] C. López-Illescas, F. de Moya-Anegón, and H. F. Moed. Coverage and citation impact of oncological journals in the Web of Science and Scopus. Journal of informetrics, 2(4):304--316, 2008. [ bib | DOI ]
[39] P. Olle, D. Rickard, and W. S. Jesper. Celebrating scholarly communication studies: A Festschrift for Olle Persson at his 60th Birthday. International Society for Scientometrics and Informetrics, 2009. [ bib ]
[40] N. J. Van Eck and L. Waltman. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2):523--538, 2009. [ bib | DOI ]
[41] D. Truex, M. Cuellar, and H. Takeda. Assessing Scholarly Influence: Using the Hirsch Indices to Reframe the Discourse. Journal of the Association for Information Systems, 10(7), 2009. [ bib | DOI ]
[42] J. A. T. da Silva and J. Dobránszki. Multiple versions of the h-index: cautionary use for formal academic purposes. Scientometrics, 115(2):1107–1113, 2018. [ bib | DOI ]
[43] L. Waltman, N. J. Van Eck, and E. C. Noyons. A unified approach to mapping and clustering of bibliometric networks. Journal of informetrics, 4(4):629--635, 2010. [ bib | DOI ]
[44] H. M. Rouzbahani, H. Karimipour, A. Dehghantanha, and R. M. Parizi. Classification of SOA-Based Cloud Services Using Data Mining Technique. In Soft Computing: Theories and Applications, pages 971--978. Springer, 2020. [ bib | DOI ]
[45] A. Abouzahra, A. Sabraoui, and K. Afdel. Model composition in Model Driven Engineering: A systematic literature review. Information and Software Technology, 125:106316, 2020. [ bib | DOI ]
[46] P. H. Nguyen, S. Ali, and T. Yue. Model-based security engineering for cyber-physical systems: A systematic mapping study. Information and Software Technology, 83:116--135, 2017. [ bib | DOI ]
[47] M. A. Mohamed, M. Challenger, and G. Kardas. Applications of model-driven engineering in cyber-physical systems: A systematic mapping study. Journal of Computer Languages, 59:100972, 2020. [ bib | DOI ]