Document Type : Research Article


Department of computer engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran.



The surrounding context information of business processes is unpredictable and dynamically changing over time. Therefore, they should dynamically adapt themselves to different changes in context information such as business rules or computational changes in available resources. For example, we may add a particular delivery service for golden customers, or provide new payment services in case of unavailability of service providers, or change a service invocation based on available bandwidth. Unlike other methods which provide a context Meta model or a shallow context taxonomy in a specific limited scope of the business domain, we focused on ontology engineering methods not only to propose a general multipurpose context ontology but also to present our proposal as an underlying ontology for other researchers to extend and customize it for their applications. In this paper, the business process adaptation knowledge is modelled in the form of concepts, relations, and axioms which comprises time, resources, performers, locations, environment, and rules to model and record whole context information of adaptation mechanism. We characterized our work in comparison with related studies to show its completeness and demonstrated it by using an online learning management system and virtual class case studies.


[1] R. Ko. A computer scientist's introductory guide to business process management (BPM). XRDS: Crossroads, The ACM Magazine for Students, 15(4):11--18, 2009. [ bib | DOI ]
[2] M. Rosemann, J. Recker, C. Flender, and P. Ansell. Understanding context-awareness in business process design. In Proceedings of the 17th Australasian Conference on Information Systems, pages 1--10. Australasian Association for Information Systems, 2006. [ bib | DOI ]
[3] M. Papazoglou, K. Pohl, M. Parkin, and A. Metzger. The S-cube research vision,” in Service research challenges and solutions for the future internet, Springer. Springer, 2010. [ bib ]
[4] Y. Rastegari and F. Shams. A Context-Aware Reflective-State Framework to Reconfigure Service-Based Applications. Journal of Computing and Security, 2(4):281--292, 2015. [ bib | DOI ]
[5] Staffs Keele et al. Guidelines for performing systematic literature reviews in software engineering. Technical report, Technical report, Ver. 2.3 EBSE Technical Report. EBSE, 2007. [ bib ]
[6] J. Santo, F. Santoro, and K. Revoredo. A method to infer the need to update situations in business process adaptation. Computers in Industry, 71:128--143, 2015. [ bib | DOI ]
[7] V. T. Nunes, F. M. Santoro, C. M. Werner, and C. G. Ralha. Real-time process adaptation: a context-aware replanning approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(1):99 -- 118, 2016. [ bib | DOI ]
[8] T. da Cunha Mattos, F. Santoro, K. Revoredo, and V. Nunes. A formal representation for context-aware business processes. Computers in Industry, 65(8):1193--1214, 2014. [ bib | DOI ]
[9] O. Saidani and S. Nurcan. Context-awareness for adequate business process modelling. In 2009 Third International Conference on Research Challenges in Information Science, pages 177--186. IEEE, 2009. [ bib | DOI ]
[10] M. Rosemann, J. Recker, and C. Flender. Contextualisation of business processes. International Journal of Business Process Integration and Management, 3(1):47--60, 2008. [ bib | DOI ]
[11] S. Najar, O. Saidani, M. Kirsch-Pinheiro, C. Souveyet, and S. Nurcan. Semantic representation of context models: a framework for analyzing and understanding. In Proceedings of the 1st Workshop on Context, Information and Ontologies, page 1–10, 2009. [ bib | DOI ]
[12] F. M. Santoro, F. Baião, K. Revoredo, and V. T. Nunes. Modeling and Using Context in Business Process Management: A Research Agenda. Journal of Modeling and Using Context, pages 1--20, 2017. [ bib | DOI ]
[13] R. Song, J. Vanthienen, W. Cui, Y. Wang, and L. Huang. What Roles do Decisions Play in Context-Aware Business Process Management? In ICEIS (2), pages 626--633. Science and Technology Publications, 2019. [ bib | DOI ]
[14] A. Chebba, T. Bouabana-Tebibel, and S. H. Rubin. Context in ontology for knowledge representation. In Advanced Computational Methods for Knowledge Engineering, pages 311--320. Springer, 2015. [ bib ]
[15] R. Song, J. Vanthienen, W. Cui, Y. Wang, and L. Huang. Towards a comprehensive understanding of the context concepts in context-aware business processes. In Proceedings of the 11th International Conference on Subject-Oriented Business Process Management, pages 1--10, 2019. [ bib | DOI ]
[16] H. Chen, F. Perich, T. Finin, and A. Joshi. Soupa: Standard ontology for ubiquitous and pervasive applications. In The First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004. MOBIQUITOUS 2004., pages 258--267. IEEE, 2004. [ bib | DOI ]
[17] D. Zhang, T. Gu, and X. Wang. Enabling context-aware smart home with semantic web technologies. International Journal of Human-friendly Welfare Robotic Systems, 6(4):12--20, 2005. [ bib | DOI ]
[18] T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang. An ontology-based context model in intelligent environments. arXiv preprint arXiv:2003.05055, 2020. [ bib | DOI ]
[19] T. Labidi, A. Mtibaa, W. Gaaloul, and F. Gargouri. Cloud SLA negotiation and re-negotiation: An ontology-based context-aware approach. Concurrency and Computation: Practice and Experience, 32(15), 2019. [ bib | DOI ]
[20] Matthias, Schahram Dustdar, and Florian Rosenberg. A survey on context-aware systems. International Journal of Ad Hoc and Ubiquitous Computing, 2(4):263--277, 2007. [ bib | DOI ]
[21] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Context aware computing for the internet of things: A survey. IEEE communications surveys & tutorials, 16(1):414 -- 454, 2013. [ bib | DOI ]
[22] O. Cabrera, X. Franch, and J. Marco. 3LConOnt: a three-level ontology for context modelling in context-aware computing. Software & Systems Modeling, 18(2):1345--1378, 2019. [ bib | DOI ]
[23] H. Guermah, T. Fissaa, H. Hafiddi, M. Nassar, and A. Kriouile. An ontology oriented architecture for context aware services adaptation. arXiv preprint arXiv:1404.3280, 2014. [ bib | DOI ]
[24] A. Zaguia and R. Alroobaea. Ontological Model to Predict user Mobility. International Journal of Advanced Computer Science and Applications, 10(2):407--413, 2019. [ bib | DOI ]
[25] F. Norki, R. Mohamad, and N. Ibrahim. Context ontology in mobile applications. Journal of Information and Communication Technology, 19(1):21--44, 2020. [ bib | DOI ]
[26] M. Asim, M. Wasim, M. Khan, W. Mahmood, and H. Abbasi. A survey of ontology learning techniques and applications. Database, 2018, 2018. [ bib | DOI ]
[27] Apache Jena. Jena Ontology API., Date Accessed: April 1, 2019. [ bib ]
[28] M. Papazoglou, K. Pohl, M. Parkin, and A. Metzger. Service research challenges and solutions for the future internet: S-cube-towards engineering, managing and adapting service-based systems. Springer, 2010. [ bib ]
[29] S. Azimi and C. Pahl. A Layered Quality Framework for Machine Learning-driven Data and Information Models. In 22nd International Conference on Enterprise Information Systems ICEIS'2020, pages 579--587, 2020. [ bib | DOI ]