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A B S T R A C T

Cooperative Spectrum Sensing (CSS) is an effective approach to improve the

detection performance of vacant frequency bands in Cognitive Radio (CR)

networks. The CSS process imposes some security threats to the CR networks.

One of these common threats is Primary User Emulation Attack (PUEA). In

PUEA, some malicious users try to mimic primary signal characteristics and

deceive CR users to prevent them from accessing the vacant frequency bands.

The present study introduces a new CSS scheme, in the presence of a malicious

PUEA, called Attack-aware CSS (ACSS). The idea is based on the estimation

of attack parameters including probabilities of the fake PUEA signals’ presence

in both occupied and unoccupied frequency bands. The obtained parameters

are innovatively applied in Neyman-Pearson (N-P) or Log-Likelihood Ratio

Test (LLRT) to improve collaborative sensing performance. Simulation results

verify the performance improvement of the proposed method against PUEA

compared with conventional method.

c© 2015 JComSec. All rights reserved.

1 Introduction

Cognitive Radio (CR) has been widely adopted as
a promising technology to overcome the spectrum
scarcity by authorizing CR users to operate oppor-
tunistically in the free space of the licensed frequency
bands in co-existence with the Primary Users (PUs)
[1]. Spectrum sensing, with the aim of finding the idle
frequency bands (spectrum holes), is the main func-
tion of CR networks [2, 3]. Collaborative Spectrum
Sensing (CSS) is known as an effective approach to im-
prove the detection performance [4, 5]. Unfortunately,
spectrum sensing process is vulnerable to Primary
User Emulation Attack (PUEA) [6]. In this particular
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type of attack, malicious user sends signal similar to
that of PU transmitter and causes the CR users to
immediately relinquish the desired frequency band [6].
To mitigate the problem of PUEA, many approaches
have been proposed.

In [7], an analytical model of the PUEA is proposed
and a lower bound on the probability of a success-
ful attack is achieved. The authors showed that the
probability of a successful PUEA increases with the
distance between the CR users and PU transmitter. In
[8], a Received Signal Strength (RSS)-based localiza-
tion defense strategy under the PUEA is proposed to
determine the location of PUEA by deploying a sensor
network. The authors assume that the PU transmitter
is a TV tower with location known to CR users. In
contrary, to avoid the deployment of additional sensor
networks and expensive hardware in the network, an-
other RSS-based defense strategy against the PUEA



110 Robust Cooperative Spectrum Sensing under Primary User Emulation . . . — A. A. Sharifi and J. M. Niya

is proposed in [9]. In the absence of PU signal, the
malicious PUEA sends a fake signal. When the CR
users receive the signal, they conduct local spectrum
sensing and then use belief propagation to exchange
the measurements to detect whether the signal is from
a licensed PU or not. Then they exchange information
with the neighboring users and calculate the beliefs
until convergence. Collaborative sensing in the pres-
ence of PUEA is investigated in [10], where the Fusion
Center (FC) assigns an appropriate weight to each CR
user’s sensing measurement and then combines them
to maximize detection probability in Neyman-Pearson
(N-P) test. The PUEA is assumed to be always present
which means the attacker consumes a constant power
in all time intervals to defraud the CR users. This
strategy is in contradiction with the true definition
of PUEA. The authors also analyzed the effect of the
channel estimation errors on the cooperative sensing
performance. In [11], we consider an intelligent PUEA
which is aware of the vacant frequency bands and ex-
actly co-located with the licensed PU transmitter and
transmits with the same power level. We obtain the
channel occupancy rate of the PUEA and apply in N-P
criterion to enhance the collaborative sensing perfor-
mance. We also introduce an attack-aware threshold
selection approach in [12]. The attack parameters are
estimated and are used to obtain the optimal thresh-
olds that minimize the global error probability. We
show that the proposed method significantly improve
the CSS performance under a greedy PUEA. In [13],
the authors introduce a smart PUE attacker which is
aware of the PU activity and performs spectrum sens-
ing and sends the fake signal with the desired signal
occurrence over a special frequency band. They show
that the smart attacker has more destructive effect on
CSS than the always present one. The authors also
investigated the smart PUEA in [14] which applies a
target destructive strategy according to its obtained
analysis of the radio environment. They also identi-
fied possible threats and investigated more efficient
and empirical strategies implemented by attackers,
finally, they proposed a resilient solution to overcome
the attack.

Most of the previous studies to defend against
PUEA have been conducted based on assuming that
the physical location or unique properties of the PU
transmitter is known for CR users or the FC. However,
in the presence of a malicious PUEA with unknown
location and the same signal characteristics as that of
the PU signal, a robust defense scheme is extremely
important. Therefore, we propose a new method that
does not require any prior information about the lo-
cation and the properties of the PUEA signal. First,
each CR user performs its spectrum sensing and sends
its results to the FC. Then, the mean and the second-

Figure 1. Network Layout

order moment values of sensing reports are calculated
and two attack parameters are innovatively estimated.
Two obtained attack parameters include the channel
occupancy rates of malicious PUEA in both the pres-
ence and the absence of the licensed PU signal. In
contrast to [12], in this study the obtained values are
hierarchically applied in Log-Likelihood Ratio Test
(LLRT) method to improve the collaborative sensing
performance. We generalize our initial results in [11].
More precisely, in [11], the PUEA signal occurrence
in the presence of the PU signal was considered equal
to zero. Here, we assume that the PUEA transmit
the fake signal in both vacant and occupied primary
bands. The proposed method is called Attack-aware
CSS (ACSS) throughout the study.

2 SystemModel

The considered system model is a centralized CR
network including a PU transmitter, N collaborative
CR users, an FC and a malicious PUEA. It is further
assumed that N CR users are randomly deployed in
a small area and are geographically far from the PU
and PUEA transmitters. The network model is shown
in Figure 1.

We assume that the energy detection scheme is
used for local spectrum sensing. A malicious PUEA is
present in the radio environment which tries to prevent
the CR users from accessing the spectrum holes. We
further assume a perfect spectrum sensing by the
PUEA, i. e, the attacker is able to exactly distinguish
between occupied and unoccupied frequency bands
allocated to the PU.

Depending on the presence or absence of the PU
and PUEA, there are four possible states which can
be expressed as:
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Hs0 : onlyNoise

Hs1 : PU +Noise

Hs2 : PUEA+Noise

Hs3 : PA+ PUEA+Noise

The first stateHs0 occurs when the CR users receive
only noise. Moreover, the channel is neither occupied
by PU nor by PUEA. The second state Hs1 happens
when the PU transmits over the channel while the
PUEA is absent. If the PU is absent and PUEA trans-
mits the fake signal, the CR users receive only the
PUEA signal plus noise, as stated by the third hy-
pothesis Hs2. Finally, the last state Hs3 indicates the
simultaneous presence of both PU and PUEA signals.

We assume that two hypothesesH1 andH0 indicate
the presence and absence of PU signal, respectively.
Similarly, the presence and absence of the PUEA signal
are denoted by Eon and Eoff , respectively. Based on
the above mentioned assumptions, the probability of
each hypothesis Hsk , denoted by πk, is determined as

π0 = P (Hs0) = P (H0, E
off ) = P (Eoff |H0)P (H0)

π1 = P (Hs1) = P (H1, E
off ) = P (Eoff |H1)P (H1)

π2 = P (Hs2) = P (H0, E
on) = P (Eon|H0)P (H0)

π3 = P (Hs3) = P (H1, E
on) = P (Eon|H1)P (H1)

(1)

Let two parameters α and β be the conditional
probabilities regarding the presence of the fake PUEA
signals in two hypotheses H1 and H0 , respectively
(i.e. α = P (EonH1) and β = P (EonH0) ), which are
related to attacker strategy. Then, the above equations
can be simplified to:

π0 = (1− β)P (H0)

π1 = (1− α)P (H1)

π2 = βP (H0)

π3 = αP (H1) (2)

By considering the four-level hypotheses, the re-
ceived signal at the ith sample of the jth CR user, xij
, can be formulated as [15],

xij =


nij Hs0
√
γjp

i
j + nij Hs1√

λje
i
j + nij Hs2

√
γjp

i
j +

√
λje

i
j + nij Hs3

(3)

where nij is the Additive White Gaussian Noise

(AWGN) at the jth CR user. The parameters
√
γjp

i
j

and
√
λje

i
j are the received PU and PUEA signal

with the powers γj and λj , respectively. We assume
that the noise at each sample (nij), the PU signal

(pij), and PUEA signal sample (eij) are independently

and identically distributed Gaussian random vari-
ables with zero mean and unit variance. We further
assume that the CR users experience independent
block Rayleigh fading channels with the same average
SNRs. This condition is relevant for the CR network
which is geographically far from the PU and PUEA
transmitters. Thus,γj and λj vary from (observation)
period to period while their Probability Density
Functions (PDFs) are exponential distributions with
the averages of γ and λ , respectively. The parameter
ρ = λ/γ is also defined as attack strength. Obviously,
a larger value of ρ(ρ� 1) indicates a more powerful
PUEA. As mentioned in Equation (3) and with re-
gard to the above assumptions, the received signal,
xij , has a Gaussian distribution as [15],

xij ∼


N(0, 1) Hs0

N(0, γj + 1) Hs1

N(0, λj + 1) Hs2

N(0, γj + λj + 1) Hs3

(4)

Moreover, M samples are utilized for local energy
detection at each CR user [16, 17]. The observed energy
of the jth user, Ej , is given by:

Ej =

M∑
i=1

|xij |2 ∼


aj Hs0

(γj + 1)bj Hs1

(λj + 1)cj Hs2

(γj + λj + 1)dj Hs3

(5)

where the random variables aj , bj , cj and dj follow
a central Chi-square distribution with M degree of
freedom. However, according to central limit theorem
[17, 18], if a large number of samples are considered
(i.e. M > 10), Ej can be assumed to have a Gaussian
distribution as:

Ej ∼


N(M, 2M) Hs0

N(M(γj + 1), 2M(γj + 1)2) Hs1

N(M(λj + 1), 2M(λj + 1)2) Hs2

N(M(γj + λj + 1), 2M(γj + λj + 1)2) Hs3

(6)

In CSS, the locally measured energy of each CR
user is sent to the FC to make a global decision about
presence or absence of the PU signal. In conventional
Equal Gain Combining (EGC) scheme [15], in the
absence of the PUEA, all of the sensing reports are
summed up and compared with a predefined threshold.
If the sum of reports is greater than the threshold
then the channel status is determined to be occupied;
otherwise, the frequency band is assumed to be idle.
The output signal at the FC is:
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Y =

N∑
j=1

Ej

H1
>

<
H0

η0 (7)

where η0 is the global threshold and determined by
the target false alarm or miss detection probability.
Obviously, the decision statistic Y has a Gaussian
distribution and in the presence of the PUEA, it can
be defined as:

Y ∼


N(µ0, σ

2
0) Hs0

N(µ1, σ
2
1) Hs1

N(µ2, σ
2
2) Hs2

N(µ3, σ
2
3) Hs3

(8)

where one can easily verify that:

µ0 = MN, σ2
0 = 2MN

µ1 = MN(γ̄ + 1), σ2
1 = 2MN(γ̄ + 1)2

µ2 = MN(λ̄+ 1), σ2
1 = 2MN(λ̄+ 1)2

µ3 = MN(γ̄ + λ̄+ 1), σ2
1 = 2MN(γ̄ + λ̄+ 1)2

(9)

For making a final decision about the presence or
absence of the PU signal, the Neyman-Pearson (N-
P) lemma is used. Assuming that the SNR values
are known, the N-P criterionon gives the optimal
fusion rule where the criterion is to maximize detection
probability with a restriction of false alarm probability
[19]. The N-P test compares the likelihood ratio or
log-likelihood ratio function (here, we use the second
one) defined as follows:

Λ = log

(
p(Y |H1)

p(Y |H0)

)H1
>

<
H0

η (10)

where the threshold value η is specified by the accept-
able false alarm or miss detection probability. Since we
assumed that the received energies from different CR
users are independent and have normal distribution,
we can rewrite Equation (10) as:

Λ =

[
log

(
σ0
σ1

)
+

(
(Y − µ0)2

2σ2
0

− (Y − µ1)2

2σ2
1

)]H1
>

<
H0

η

(11)

Let Qfa be the probability of global false alarm in
CSS. Then we have

Qfa =P (Don|H0)

=P (Don|H0, E
on)P (Eon|H0)

+ P (Don|H0, E
off )P (Eoff |H0)

=P (Don|Hs2)β + P (Don|Hs0)(1− β) (12)

The probability of global detection, denoted by Qd,
is defined as:

Qd =P (Don|H1)

=P (Don|H1, E
on)P (Eon|H1)

+ P (Don|H1, E
off )P (Eoff |H1)

=P (Don|Hs3)α+ P (Don|Hs1)(1− α) (13)

whereDon means that the FC’s decision is the presence
of PU signal.

To evaluate the performance of CSS in the presence
of a malicious PUEA and compare it to conventional
energy detection, in which the PUEA is not considered,
we use correct sensing probability Qc . The parameter
Qc defines probability of making a correct decision in
PU detection. The probability of correct sensing can
be written, in general, as:

Qc =P (H0, D
off ) + P (H1, D

on)

=P (H0)(1−Qfa) + P (H1)Qd (14)

where Doff means that the FC’s decision is the ab-
sence of PU signal.

With regard to Equations (12) and (13), the above
equation can be rewritten as:

Qc =P (Doff |Hs0)π0 + P (Doff |Hs2)π2

+ P (Don|Hs1)π1 + P (Don|Hs3)π3 (15)

In the following section, the proposed ACSS method
is thoroughly described.

3 The Proposed Attack-Aware Coop-
erative Spectrum Sensing

The proposed scheme includes estimation of attack
parameters and application of the obtained parame-
ters in the LLRT method to improve the cooperative
sensing performance. Assuming P (H0) and P (H1),
two attack parameters α and β are simultaneously
estimated. The estimation of attack parameters is
based on the value of received sensing reports. Two
parameters m and v are defined as:

m =
1

N

N∑
j=1

Ej , v =
1

N

N∑
j=1

Ej
2 (16)

The mathematical expectation of m and v are:

E(m) =
1

N

N∑
j=1

E(Ej), v =
1

N

N∑
j=1

E(Ej
2) (17)

By considering four different hypothesesHs0 , Hs1 , Hs2

and Hs3 we have:
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E(Ej) =E(Ej |Hs0)π0 + E(Ej |Hs1)π1

+ E(Ej |Hs2)π2 + E(Ej |Hs3)π3

=µ0π0 + µ1π1 + µ2π2 + µ3π3

=Mπ0 +M(γj + 1)π1 +M(λj + 1)π2

+M(γj + λj + 1)π3 (18)

Accordingly,

E(Ej
2) =(µ2

0 + σ2
0)π0 + (µ2

1 + σ2
1)π1

+ (µ2
2 + σ2

2)π2 + (µ2
3 + σ2

3)π3

=(M2 + 2M){π0 + (γj + 1)2π1

+ (λj + 1)2π2 + (γj + λj + 1)2π3} (19)

Obviously, two Equations (18) and (19) are the
mean and second-order moment values of received
sensing reports, respectively. Finally, by substituting
Equations (18) and (19) into Equation (17), two
parameters E(m) and E(v) are calculated as:

E(M) =Mπ0 +M(γ̄ + 1)π1 +M(λ̄+ 1)π2

+M(γ̄ + λ̄+ 1)π3 (20)

and

E(v) =(M2 + 2M){π0 + (2γ̄2 + 2γ̄ + 1)π1

+ (2λ̄2 + 2λ̄+ 1)π2

+ (2γ̄2 + 2λ̄2 + 2γ̄λ̄+ 2γ̄ + 2λ̄+ 1)π3}
(21)

where γ̄ = 1
N

∑
j=1Nγj is the average SNR between

PU and CR users and λ̄ = 1
N

∑
j=1Nλj is also the

average SNR between PUEA and CR users. Regarding
to exponential distribution of γj and λj ,E(γj

2) = 2γ̄2

and E(λj
2) = 2λ̄2 . By substituting the Equation (2)

in Equations (20) and (21), these equations can be
summarized as:{

ψ0α+ ψ1β = φ0

ψ2α+ ψ3β = φ1
(22)

where the parameters ψ0, ψ1, ψ2, ψ3, φ0 and φ1 are
defined as:

ψ0 = P (H1)Mλ̄

ψ1 = P (H0)Mλ̄

ψ2 = (2M +M2)P (H1)(γ̄ + λ̄+ 1)2λ̄

ψ3 = (2M +M2)P (H0)(λ̄+ 1)2λ̄

φ0 = E(m)−M [P (H0) + P (H1)(γ̄ + 1)]

φ1 = E(v)− (2M +M2)[(P (H0) + P (H1))

(2γ̄2 + 2γ̄ + 1)]

From the Equation (22), the values of unknown
attack parameters α and β are obtained as:

α̂ =
ψ1φ1 − ψ3φ0
ψ1ψ2 − ψ0ψ3

β̂ =
ψ2φ0 − ψ0φ1
ψ1ψ2 − ψ0ψ3

ψ1ψ2 6= ψ0ψ3 (γ 6= 0) (23)

The proposed ACSS approach is based on LLRT
method. Two attack parameters α and β are estimated
and then used in the LLRT hypothesis testing.

Two conditional PDFs of decision statistics Y are
expressed as follows:

p(Y |H1) =p(Y |H1, E
on)P (Eon|H1)

+p(Y |H1, E
off )P (Eoff |H1)

p(Y |H0) =p(Y |H0, E
on)P (Eon|H0)

+p(Y |H0, E
off )P (Eoff |H0) (24)

With regard to α = P (EonH1) and β = P (EonH0) ,
we have:

p(Y |H1) = p(Y |H1, E
on)α+ p(Y |H1, E

off )(1− α)

p(Y |H0) = p(Y |H0, E
on)β + p(Y |H0, E

off )(1− β)
(25)

Thus, the decision statistic of the LLRT scheme,
expressed in Equation (10) can be generalized by the
following formula:

Λ = log

(
p(Y |H1)

p(Y |H0)

)
= log

(
p(Y |H1, E

on)α+ p(Y |H1, E
off )(1− α)

p(Y |H0, Eon)β + p(Y |H0, Eoff )(1− β)

)
= log

(
p(Y |Hs3)α+ p(Y |Hs1)(1− α)

p(Y |Hs2)β + p(Y |Hs0)(1− β)

)H1
>

<
H0

η (26)

It should be noted that the above equation for α =
β = 0 is the same as Equation (10).

4 Simulation Results and Discussions

We provide numerical simulations to demonstrate
the advantage of our proposed ACSS scheme in the
presence of a malicious PUEA. In the proposed system
model the channel is assumed to be Rayleigh fading
and there are 12 CR users (N = 12) that use energy
detection by M = 30 sample in a detection interval.
The prior probabilities P (H0) and P (H1) are assumed
to be 0.8 and 0.2, respectively. The global threshold
η is selected as log(P (H0))/P (H1)). All parameters
are constant unless otherwise specified.

Results are obtained through Monte-Carlo simula-
tions over 104 runs. Throughout the simulations, we
have labeled the curves by “LLRT (No Attach)” when
there is not any PUEA signals and labeled them by
“Conventional LLRT” in the case that there is PUEA
signals but the FC is not aware of the fake signals.
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Figure 2. The convergence of attack parameter (α = 0.1, 0.3)
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Figure 3. The convergence of attack parameter (β = 0.6, 0.9)

Figures 2 and 3 show the convergences of attack
parameters for α = 0.1, 0.3 and β = 0.6, 0.9 , respec-
tively. The estimated values for α and β are converged
to constant values after applying almost 1000 and
3000 rounds of sensing, respectively. Regarding the
value of P (H1) and α = 0.3 meaning that the PUEA
transmits the fake signal only in 30% of hypothesis
H1, the convergence of α happens later than that of β
. In the simulation, the initial stage can be set as the
first 3000 sensing intervals where the attack param-
eters are estimated and then used to find optimum
thresholds to improve the CSS process in the presence
of a malicious PUEA.

Figures 4, 5, and 6 show the correct sensing proba-
bilities versus SNR (γ̄) for attack strength 0.1, 0.5 and
1, respectively. As shown in the figures, using the pro-
posed ACSS method improves the performance of CSS
under malicious PUEA signals. As for ρ = 0.1 , where
the PU is 10 times more powerful than the PUEA,
the effect of the attacker is negligible and increasing
two attack parameters α and β has no effect on cor-
rect sensing probability. For ρ = 0.5 and ρ = 1, as
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Figure 4. Probability of correct sensing versus average SNR
(γ) with ρ = 0.1
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Figure 5. Probability of correct sensing versus average SNR
(γ) with ρ = 0.5
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Figure 6. Probability of correct sensing versus average SNR
(γ) with ρ = 1
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Figure 7. Probability of correct sensing versus β with
SNR=-5dB and α = 0.1

shown in Figures 5 and 6, using the proposed method
remarkably improves performance of CSS under fake
signals of the PUEA. In addition, as α and β increase,
improvement gained by our proposed method will in-
crease. For α = 0.3, β = 0.9, the difference between
conventional and proposed method is greater than for
α = 0.1, β = 0.6 . It should be noted that in both spec-
trum sensing procedures (conventional and proposed)
the PUEA can decrease the probability of correct sens-
ing at the FC by increasing parameters α and β.

Figure 7 depicts the correct sensing probability ver-
sus attack parameter β for various attack strength
ρ(0.1, 0.5, 1) in SNR=-5dB and α = 0.1. As shown in
the figure, in conventional method, increasing both
parameters ρ and β leads to less correct sensing prob-
ability, in contrary, by the proposed ACSS method,
increasing ρ and β causes a small change in the rate
of correct sensing probability.

Figures 8 and 9 depict the 3-D plot of correct sens-
ing probabilities versus α and β for conventional and
proposed ACSS methods, respectively. The average
SNR (γ̄) and attack strength (ρ) are assumed to be
-5 dB and 0.5, respectively. As shown, in conventional
method, with increasing α and β the correct sensing
probability is remarkably decreased. Using the pro-
posed ACSS method high gain is achieved, where for
α = β = 1 , in which the PUEA is always present, the
correct sensing probability reduces to 0.9.

The results obtained from Figures 10 and 11 for
ρ = 1 are also similar to that of Figures 8 and 9,
respectively.

In Figures 12 and 13, the attack strength ρ is as-
sumed to be 2, where a powerful PUEA is considered,
it is concluded that the proposed method is even use-
ful for ρ > 1.
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Figure 8. Probability of correct sensing versus α, β with
ρ = 0.5 for conventional method
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Figure 9. Probability of correct sensing versus α, β with
ρ = 0.5 for proposed ACSS scheme
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Figure 10. Probability of correct sensing versus α, β with
ρ = 1 for conventional method

5 Conclusion

In the current study, Cooperative Spectrum Sensing
(CSS) in the presence of Primary User Emulation At-
tack (PUEA) was investigated. As a countermeasure
against PUEA, an appropriate defense strategy was
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Figure 11. Probability of correct sensing versus α, β with
ρ = 1 for proposed ACSS scheme
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Figure 12. Probability of correct sensing versus α, β with
ρ = 1 for conventional method
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Figure 13. Probability of correct sensing versus α, β with
ρ = 1 for proposed ACSS scheme

proposed which estimated two attack parameters, i.e.
probabilities of the presence of a PUEA fake signal
in occupied and unoccupied frequency bands, and
applied to Log-Likelihood Ratio Test (LLRT) to de-
termine the hold hypothesis. We observed that when

the average SNR in CR users received from PU and
PUEA are identical, neither CR users nor the FC can
differentiate between received signal from PU and
PUEA. In this case, the proposed method improved
the CSS performance. The obtained results verified
the effectiveness of the proposed scheme compared
with conventional method.
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