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A B S T R A C T

Service-based application (SBA) is composed of software services, and these

services may be owned by the developing organization or third parties. To

provide functionalities based on the user’s preferences, SBA’s constitute services

should be selected dynamically at runtime. For each distinct user’s request, we

aim at finding a sequence of services which mostly satisfies user’s preferences.

Furthermore, we aim at reporting in a systematic manner the list of relevant

contributions similar to our work focusing on the adaptation mechanisms.

We applied Hidden Markov Model (HMM) to propose a QoS-based service

selection method. The method is presented in three steps: Modelling, Learning,

and QoS-based Selection. We used real-world QoS dataset to investigate the

fitness and the execution time of the method. We compared this work with

GSA-based and PSO-based service selection methods. We built and trained an

HMM for selecting services for a given sequence of tasks in which the selected

services are mostly aligned with user’s preferences. Experimental results

showed that our method achieves the maximum fitness in a reasonable time.

Since service-oriented environments are ever changing, unsupervised learning

approaches like Maximum Likelihood Estimation or Viterbi Training should be

used to modify the elements and the probabilities of HMM.

c© 2019 JComSec. All rights reserved.

1 Introduction

Service-oriented computing is increasingly adopted as
a paradigm for building loosely coupled, distributed
and adaptive software applications, called service-
based applications (SBA). SBA is composed of soft-
ware services (i.e. constitute services), and those ser-
vices may be owned by the developing organization
or third parties [1]. SBA adaptation is required to
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overcome the runtime changes in functionalities and
quality objectives. Therefore, it is desirable to modify
SBA’s constitute services through (semi) automatic
adaptation mechanisms.

Adaptation mechanisms are the techniques and fa-
cilities provided by SBA that enable adaptation strate-
gies like service re-composition, service re-selection,
or service re-negotiation [2]. The realization of adap-
tation mechanisms may be done automatically or may
require user involvement; that is, human-in-the-loop
adaptation. The adaptation mechanisms are classified
into Adaptive, Corrective, Preventive, and Extend-
ing according to S-CUBE [3] adaptation taxonomy.

https://dx.doi.org/10.22108/jcs.2018.106853.0
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Figure 1. Dynamic Service Selection Model.

Most of the existing approaches focus on Adaptive
mechanisms [4–7] which modify the SBA in response
to changes affecting its environment like contextual
changes or the needs of a particular user. Correc-
tive mechanisms [8–15] replace a faulty service with
a new version that provides the same functionality
and quality. Preventive mechanisms [16–18] use pre-
diction techniques to detect the probable failures or
SLA violations and also assess the accuracy of predic-
tion. There are few approaches targeting Extending
mechanisms [19–22] which aim to extend the SBA by
adding new required functionalities.

In this paper we focus on SBA customization based
on user’s preferences, which is a subset of Adaptive
mechanisms. Suppose itinerary purchase scenario in
which the travel agency is the owner of SBA. Travel
agency orchestrates the available services to fulfil
the customers’ requests. Each customer has specific
preferences that are expected to be satisfied by travel
agency. A customer may prefer cost-effective flight
and normal hotel, while the other customer may prefer
high-quality flight and luxury hotel. These quality
concerns could be achieved by dynamically selecting
web services based on user’s preferences. As shown
in Figure 1, dynamic service selection includes the
following steps [23]:

• Converting a user’s request to a machine under-
standable model

• Discovering candidate services for each task of a
given process

• Selecting the best set of services among candi-
date services based on QoS constraints and user’s
preferences

• Executing the solution (made in step 3) with
Business Process Execution Language (BPEL)
engine and producing the results

Finding the best services through the ordinary meth-
ods leads to an NP-hard problem. Therefore several
heuristic and dynamic programming approaches were
proposed to model service selection as an optimiza-
tion problem. In this paper we present a dynamic ser-
vice selection method which has a strong mathemati-

cal basis. The proposed method is based on Hidden
Markov Model (HMM), i.e., a mathematical model
inspired from Markov Chain. The method considers
user’s preferences while selecting appropriate services
for a given set of tasks. The process of applying HMM
in the service selection problem includes following
steps: Modelling, Learning, and QoS-based Selection.
In modelling step, HMM is applied in the service se-
lection problem. The output HMM from the previous
step is initialized in learning step by supervised or un-
supervised learning methods. The Viterbi algorithm
is used in QoS-based selection step to select the most
appropriate services in a reasonable time.

Execution time and fitness are the critical factors
in comparing and proposing service selection meth-
ods. Execution time shows the length of time taken
for selecting services and producing a composition
model in common business process languages like WS-
BPEL. Fitness shows how much the output model
satisfies user’s preferences. Fitness has direct relation-
ship with user satisfaction. In comparison with GSA-
based, PSO-based, and GA-based service selection
methods, our method achieves the maximum fitness
in a reasonable time.

The rest of this paper is organized as follows. The
characteristics of this work are compared with related
studies in Section 2. Section 3 describes HMM briefly.
The proposed service selection method based on HMM
is described in Section 4. Section 5 presents the ex-
perimental results. Finally the paper is concluded in
Section 6.

2 State of the Art

To develop the related work, we have followed the
principles and guidelines of Systematic Literature Re-
views (SLRs) as defined by Kitchenham [24]. Never-
theless, the goal in this paper is not to develop an
exhaustive SLR with all the work available in the lit-
erature, but to report in a systematic manner the list
of relevant contributions similar to our work focusing
on the quality of service adaptation mechanisms in
service-based applications. We have performed a man-
ual search with the term “adaptation” AND “service
based application” AND “quality of service” on top
ranked journals and conferences from 2010 to 2015.
The terms have been applied to title, abstract and
keywords. By applying this search protocol, we found
145 papers covering the search criteria. 80 papers were
discarded by title, 38 by abstract, and 8 papers were
discarded after a fast reading, leading to a total of 19
papers that present different approaches. We classi-
fied them in four following classes based on the usage
of the adaptation process: Adaptive, Corrective, Pre-
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ventive and Extending.

2.1 Adaptive Adaptation

MOSES [4] is a QoS-based adaptation framework
based on MAPE components. It is classified as an
adaptive adaptation method. MOSES uses abstract
composition to create new processes and also service
selection to dynamically bind the processes to differ-
ent concrete web services. MOSES is applicable where
a service-oriented system is architected as a compos-
ite service. RuCAS [5] is a rule-based service plat-
form, which helps clients to manage their own context-
aware web services via Web-API or GUI-based inter-
face. RuCAS together with an autonomic manager
could shape a self-managing ecosystem. Beggas, et al.
[6] proposed a middleware that calculates ideal QoS
model using a fuzzy control system to fit context in-
formation and user preferences. Then, the middleware
selects the best service among all variants having the
nearest QoS value to the ideal. Chouiref et al. [25] pro-
posed a fuzzy framework for service selection. These
types of approaches are classified as context-aware
or perfective adaptation in which the quality char-
acteristics of SBA are optimized, or the application
is customized or personalized according to the needs
and requirements of particular users. CHAMELEON
[7] is an adaptive adaptation framework which per-
sonalize/customize the application according to the
device and network contexts in B3G mobile networks.
They enriched the standard Java syntax to specify
adaptable classes, adaptable methods and adaptation
alternatives that specify how one or more adaptable
methods can actually be adapted. In [26], two hid-
den markov models (HMM1 and HMM2) are used
for context-aware service selection. HMM1 is used for
modelling context information and HMM2 is used for
modelling invoked services. Building HMM is different
from this work, since they did not consider quality of
services in selection phase. Also the efficiency and the
scalability of the model are not evaluated. Since ser-
vice providers do not expose the details of functional
and quality of web services, it is hard for consumers
to make an efficient service contract. Wang et al. [27]
proposed incentive contract to offer qualities based on
consumer preferences. Canton-Puerto et al. [28] used
Baum-Welch algorithm to train HMM. They consid-
ered QoS parameters like cost, performance etc. Un-
like we make relation between web services (hidden
states) and tasks (observed states), they mapped web
services to different qualities.

2.2 Corrective Adaptation

VieCure [8] is a corrective adaptation method which
extracts monitored misbehaviours to diagnoses them

with self-healing algorithms and then repairs them in
non-intrusive manner. Since VieCure uses recovery
mechanisms to avoid degraded or stalled systems, it is
also a preventive approach. Psaier, et al. [9] proposed
a corrective adaptation architecture which reconfigure
local interactions among service oriented collaborators
or substitute collaborators to maintain system func-
tionalities. The adaptation mechanisms operate based
on similarity and socially inspired trust mirroring and
trust teleportation. The authors integrate VieCure
with GENESIS2 [29] (i.e. an SOA-based testbed gen-
erator framework) to realize control-feedback loop and
simulate adaptation scenarios in collaborative service-
oriented network. Ismail et al. [10] proposed SLA vio-
lation handling architecture which performs incremen-
tal impact analysis for incrementing an impact region
with additional information. To determine the impact
region candidates, they defined Time inconsistency
(direct dependency between services) and Time unsat-
isfactory (dependency between a service and the en-
tire process) relationships. Then the recovery instance
obtains the relevant information to identify the appro-
priate recovery plan. The proposed strategy would re-
duce the amount of change. Zisman et al. [11] proposed
a reactive and proactive dynamic service discovery
framework. In pull (reactive) mode, it executes queries
when a need for finding a replacement service arises.
In push (proactive) mode, queries are subscribed to
the framework to be executed proactively. They com-
pute the distances between query and service specifi-
cations. They used complex queries expressed in an
XML-based query language SerDiQueL. In another
work by Mahbub et al. [12], PROSDIN framework
is proposed which proactively perform SLA negotia-
tion with candidate services. The goal is to reduce the
lengthy negotiation process during service discovery
and substitution. DRF4SOA [13] is built on service
component architecture (SCA) to model program in-
dependent from technologies and encapsulate each
MAPE phase in SCA Composites which allows expos-
ing their business as a service. DRF4SOA implements
substitution and load balancing strategies to tackle
non-functional requirements. SEco [14] is a dynamic
architecture for service-based mobile applications. It
consist SEco agent and SEco manager. SEco agents
gather and send quality data of running applications
to SEco manager. SEco manager decide on quality im-
provement and send adaptation actions to SEco agent.
To support architectural dynamisms, SEco agent im-
plements dynamic offloading or dynamic service de-
ployment strategies. SAFDIS [15] is an OSGi-based
framework which uses short-term and long-term rea-
soners to maintain the SBA quality above a minimum
level. SAFDIS considers only the migration of services
by registering and unregistering bundle of services.
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2.3 Preventive Adaptation

Some works try to prevent service based applications
from future faults or SLA violations. Wang et al. [16]
make adaptation decisions through two-phase evalu-
ations. In estimation phase, they estimate the QoS
attribute (e.g. execution time) in the future and com-
pare the estimated value with the target value defined
in the SLA. If a violation is tent to happen, a suspi-
cion of SLA violation is reported to decision phase.
In decision phase, they use static and adaptive deci-
sion strategies to evaluate the trustworthy level of the
suspicion in order to decide whether to accept or to
neglect the suspicion.

Unnecessary adaptations can be costly and also
faulty even in the proactive case. Metzger et al. [17]
propose a preventive approach for augmenting service
monitoring with online testing to produce failure pre-
dictions with confidence. In a similar work [18], Met-
zger selected prediction techniques and defined met-
rics to assess the accuracy of predictions. Jingjing et
al. [30] proposed a proactive service selection method
to prevent service provider overloads. The proactive
method is based on analysing a time series of services
received to forecast the overloads through a negotia-
tion process.

2.4 Extending Adaptation

Auxo [19] is an extending adaptation approach which
realize adaptation concerns through modifying the
runtime software architecture (RSA) model. Auxo
proposes an architecture style (interfaces, connectors
and components) and runtime infrastructure which
maintains an explicit and modifiable RSA model. To
fulfil the modification requests, they modify the RSA
model, evaluate the architecture constraints, and en-
act changes to the real system. SALMon [20] is a mon-
itoring framework that supports different adaptation
strategies in the SBA lifecycle by providing the knowl-
edge base (accurate and complete QoS) to the follow-
ing expert systems: WeSSQoS (for service selection
based on user requirements), FCM (for service deploy-
ment on a cloud federation system), SALMonADA
(for identifying and reporting SLA violations), MAE-
SoS, PROSA, PROTEUS, and CASE (for adapta-
tion purposes whenever malfunctions in the system
occur). Daubert et al. [21] proposed Kevoree, a re-
flective framework which provides models@runtime
approach to design adaptable SBA. Models@runtime
considers the reflection layer as a real model that
can be uncoupled from the running architecture for
reasoning, validation and simulations purposes and
later automatically resynchronized with its running
instance. CLAM [22] is a cross-layer adaptation man-
ager for SBA. CLAM provides Application, Service

Figure 2. The Basic Hidden Markov Model.

and Infrastructure models. Each model element is
associated with Analysers, Solvers and Enactors. A
cross-layer rule engine governs the coordination of
Analysers, Solvers and Enactors. For each adaptation
need, CLAM produces a tree of the possible alterna-
tive adaptations, identifies the most convenient one,
and applies it.

To classify our work, we defined its characteristics
using S-CUBE adaptation taxonomy. The adaptation
taxonomy distinguishes approaches by three following
questions: 1) Why is adaptation needed (adaptation
usage)?, 2) What are the adaptation subject and
aspect?, and 3) How does adaptation strategy take
place?. As shown in Table 1, this research presented
an adaptive method which customizes SBA based
on user’s preferences and quality constraints. The
adaptation subjects are SBA’s constitute services and
their composition models. We applied HMM to realize
service selection adaptation strategy.

3 Hidden Markov Model

An HMM has an underlying stochastic process that
is not observable (it is hidden), but can only be ob-
served through another set of stochastic processes
that produce the sequence of observed symbols [31].
In Figure 2, hidden states are presented by circles and
observed symbols are presented by rectangles. HMMs
is applicable in speech processing, natural language
processing, extracting target information from docu-
ments etc.

HMM is formally defined in formula 1, where S is the
set of states, and V is the set of possible observations
[32].

λ = (A,B, π) (1)

S = (s1, s2, ..., sN ) (2)

V = (v1, v2, ..., vM ) (3)
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Table 1. Classification of SBA Adaptation Approaches, According to S-CUBE Adaptation Taxonomy.

Usage Subject Aspect Strategy

MOSES [4] Adaptive
Constitute services;

Composition instance

New/modified non-

functional requirements

Service selection; Coordination

pattern selection

RuCAS [5] Adaptive
Web context-aware

services
Contextual changes Dynamic binding

Beggas, et al. [6] Adaptive Constitute services
QoS, User contextual

changes

Calculating ideal QoS values and
selecting a service variant having

the nearest QoS values to the

ideal

CHAMELEON [7] Adaptive Adaptable service class
QoS; User needs;

Contextual changes

Switching among adaptation

alternatives considered at
deployment time

VieCure [8] Corrective and
Preventive

Constitute services QoS; Misbehaviours Recovery technique

Psaier, et al. [9] Corrective Local interactions
Unexpected low
performance

Regulation by link modification

or substitution of actors based

on similarity and trust metrics

Ismail et al. [10] Corrective Process instance; Services SLA violations
Reduce the amount of service

that need to be recovered (or
changed)

Zisman et al. [11] Corrective Constitute services QoS
Service discovery in pull
(reactive) mode and push

(proactive) mode

PROSDIN [12] Corrective Constitute services QoS
SLA negotiation; Dynamic

discovery and binding

DRF4SOA [13] Corrective Components; Services
Non-functional

requirements changes
Substitution; Load balancing

SEco [14] Corrective
Constitute portable

services
QoS; Manageability

Dynamic deployment; Dynamic
offloading

SAFDIS [15] Corrective Constitute services QoS
Registering and unregistering

services (bundle of services)

Wang [16] Preventive
SBA instance; Constitute

services

QoS; Prevent unnecessary

adaptation

Making adaptation decisions

through two-phase evaluations
(estimation and decision)

Metzger [17] Preventive Constitute services
QoS, Prevent unnecessary

adaptation
Augmenting service monitoring

with online testing

Metzger [18] Preventive
Constitute services;
Third-party services

QoS, Failure prediction Applying prediction techniques

Auxo [19] Extending
Component; Connector;

Interface
Unexpected environments

Modifying runtime software

architecture models

SALMon [20] Extending Constitute services QoS

Model-based and Invocation-

based configuration of SALMon;
Re-selection; Redeployment

Kevoree [21] Extending

Business process;
Composition and

coordination;

Infrastructure

QoS-based cross-layer

adaptation

Using reflection and

models@runtime techniques

CLAM [22] Extending Whole SBA model cross-layer adaptation

Different strategies like:

add/remove service, mismatch
solving, parallelize process

activities, etc.

Current research Adaptive
(customization)

Constitute services,
Composition model

QoS changes; User’s
preferences

Applying HMM for QoS-based
service selection
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Q is a sequence of hidden states with length T and O
is a sequence of observations. Each observation in O is
emitted by a hidden state inQ. As presented in formula
6 and formula 7, A is the transition array, storing
the time-independent probability of state j following
state i, and, B is the observation array, storing the
probability of observation m being produced from the
state i, independent of t.

Q = (q1, q2, ..., qT ) (4)

O = (o1, o2, ..., oT ) (5)

A = [aij ], aij = P (qt = sj |qt−1 = si) (6)

B = [bi(m)], bi(m) = P (xt = vk|qt = si) (7)

In formula 8, π is defined as the initial probability
array:

π = [πi], πi = P (q1 = si) (8)

The model makes two assumptions including the
Markov assumption and the independence assumption,
presented in formula 9 and formula 10. The Markov
assumption, states that the current state is dependent
only on the previous state. The independence assump-
tion, states that the output observation at time t is
dependent only on the current state; it is independent
of the previous observations and states:

P (qt|qt−1
1 ) = P (qt|qt−1) (9)

P (ot|ot−1
1 ) = P (ot|qt) (10)

Given a HMM λ and a sequence of observations O,
we would like to compute P(O,λ), i.e., the probability
of observing sequence O.

The probability of the observations O for a specific
state sequence Q and the probability of the state
sequence are shown in formula 11 and formula 12
respectively:

P (O|Q,λ) =

T∏
t=1

P (ot|qt, λ) (11)

P (Q|λ) = πq1 × aq1q2 × aq2q3 × ...× aq(T−1)qT (12)

So we can calculate the probability of the observa-
tions given the model as:

P (O|λ) =
∑
Q

P (O|Q,λ)× P (Q|λ) (13)

The result shows the probability of observing se-
quence O by considering state sequence Q.

Figure 3. HMM Is Applied for the Service Selection Problem.

4 Service Selection Based on HMM

In this section, we applied HMM for the service se-
lection problem in three following steps: Modelling,
Learning, and QoS-based Selection.

4.1 Modelling

The formal definition of service selection problem is
as follows:

λ = (V isitRate, SelRate, π) (14)

AWS is the set of available web services, and AT is
the set of tasks of all processes.

AWS = (ws1, ws2, ..., wsN ) (15)

AT = (t1, t2, ..., tM ) (16)

We define WS as a sequence of web services with
length T. We also define T as a sequence of tasks.
Each task in T consumes a corresponding web service
in WS.

WS = (ws1, ws2, ..., wsT ) (17)

T = (t1, t2, ..., tT ) (18)

As defined in Eq. 2 and Eq. 3, HMM includes se-
quence of hidden states and sequence of possible ob-
servations. As defined in Eq. 7, hidden state si has
the probability bi(m) to produce the observation vm.
Considering si as the ith candidate web service, and
vm as the mth task of a process, we could say bi(m) in-
dicates the probability of selecting ith web service for
mth task. Figure 3 represent this assumption in graph-
ical mode. As you can see, web services are modeled
with hidden states and process’s tasks are modeled
with observations.

We defined V isitRateij to indicate the probability
of visiting j th web service, just after the ith web
service is visited. Visit rate is similar to Eq. 6 which
defines the transition probabilities between hidden
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states. Visit rates are initialized in learning step and
their values could be updates by the log records of the
services repository server (i.e. UDDI server).

V isitRateij =
no.of times WSj is visited after WSi

no.of times WSi is visited
(19)

We need to present rational definitions for the state
transition probabilities (Eq. 6), and the output prob-
abilities (Eq. 7). We defined SelRatei(m) to indicate
the probability of selecting ith web service for mth
task. Selection rate is similar to Eq. 7 which defines
the output probabilities. Selection rates are initialized
in learning step and their values could be updates by
the logs of BPEL engine.

SelRatei(m) =
no.of times WSi is selected for Tm

no.of times WSi is selected
(20)

4.2 Learning

After modelling the service selection problem by HMM,
the output model should be trained by supervised
learning methods or unsupervised learning methods.
The unknown parameters of an HMM are the transi-
tions probabilities and the output (observation) prob-
abilities.

In supervised learning, we use a database of sample
HMM behaviours and estimate the transition proba-
bilities and the output probabilities. The Visit rate
array (Eq. 19) could be estimated either based on the
log records of services repository or based on the log
records of BPEL engine. The Selection rate array (Eq.
20) could be estimated based on the history of service
invocations. The selected web services are described
in WS-BPEL format. BPEL engine executes given
WS-BPEL process and invokes the selected web ser-
vices. Therefore, the log of service invocations is kept
by BPEL engine.

In unsupervised learning, HMM parameters have
to be estimated from the observed sequences and the
parameters are updated based on new samples. If
database of samples are not available, the standard
unsupervised approaches like Maximum Likelihood
Estimation or Viterbi Training could be applied [33].

4.3 QoS-Based Selection

It is necessary to consider user’s quality preferences
while selecting the best services for each task. So we
define the fitness function based on user’s preferences
and the QoS parameters of services. Some quality
parameters like execution-time and cost have inverse

relationship with their measurements (i.e., a higher
value shows a lower degree of quality), whereas some
quality parameters like reliability and availability are
in direct relationship with their measurements (i.e., a
higher value shows a higher degree of quality). Since
we need a fitness function composed of the above
measures, with a value in range of [0, 1], we use Eq. (21)
for the quality parameters with inverse relationship
and Eq. (22) for the quality parameters with direct
relationship.

V (QK
ij ) =


QK

ij−minv(Q
K
iv)

maxv(QK
iv
)−minv(QK

iv
)
, maxv(QK

iv) 6= minv(QK
iv)

1, maxv(QK
iv) = minv(QK

iv)

(21)

V (QK
ij ) =


maxv(Q

K
iv)−QK

ij

maxv(QK
iv
)−minv(QK

iv
)
, maxv(QK

iv) 6= minv(QK
iv)

1, maxv(QK
iv) = minv(QK

iv)

(22)

Fitness function is defined in Eq. (23):

Fij =

k∑
V k
ijWk, 0 6Wk 6 1,

∑
Wk = 1 (23)

Where, Wk is the weight of kth quality parameter
identified in user’s preferences, V k

ij is the standardized
value of the kth QoS parameter of the j th candidate
web service for the ith task, and F k

ij is the standardized
fitness value of the j th candidate web service for the
ith task.

In order to consider the effects of user’s preferences
in selecting the best services, Eq. 11 is modified to Eq.
24. The fitness function (Eq. 23) adjusts the output
probabilities based on user’s preferences.

P (T |WS) =

T∏
t=1

P (Tt|WSt)× Ftt (24)

Finally, the Viterbi algorithm is used to find the
best services for a given sequence of tasks. The Viterbi
algorithm is a dynamic programming algorithm for
finding the most likely sequence of hidden states that
produces a sequence of observations. The time com-
plexity of the Viterbi algorithm is O(T ×|S|2), where
|S| indicates the number of hidden states (i.e. web
services) and T indicates the length of output (i.e.
tasks).

4.4 Pseudo Code

The pseudo code of the proposed method is shown
in Algorithm 1. The algorithm starts with checking
whether the HMM structure exists or not. If not, the
structure is defined using VisitRate to produce state
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Algorithm 1 QoS-Based Service Selection

input:
all available web services (SERVICES REPOSITORY),
all processes’ tasks (PROCESSES),
user’s preferences (QoS WEIGHT),
requested process (REQUESTED PROCESS),
log of service invocations (LOG)
output:
a sequence including the best web services for realizing REQUESTED PROCESS (SOLUTION)

1: begin
2: if (HMM does not exist) then //build and train HMM
3: for each service i in SERVICES REPOSITORY do
4: AWSi ←− service i // Eq. 15
5: for each task i in PROCESSES do
6: ATi ←− task i // Eq. 16
7: //Use LOG records and Eq. 19 to produce state transition (probabilities)
8: //Use LOG records and Eq. 20 to produce output probabilities
9: end for

10: end for
11: end if
12: for each task i in REQUESTED PROCESS do
13: Ti task i //Eq. 18
14: for each task i in REQUESTED PROCESS do
15: for each service j in SERVICES REPOSITORY do
16: setFijusingQoS WEIGHT //Eq. 23
17:

18: end for
19: end for
20: end for
21: //Use Viterbi algorithm to produce sequence WS (Eq. 17) as a SOLUTION which includes the most appro-

priate web services for the given sequence of tasks T (Eq. 18)
22: return SOLUTION
23: end

transition probabilities (refer to Eq. 19) and SelRate
to produce output probabilities (refer to Eq. 20). Next,
vector T is defined as a sequence of tasks in requested
process. Each task in T consumes a corresponding web
service. Then, two nested loops make Fitness matrix
(refer to Eq. 23) which is used to adjust the output
probabilities based on user’s preferences. Finally, the
Viterbi algorithm is used to produce sequence WS,
which includes the most appropriate web services for
the given sequence of tasks T.

5 Experimental Results

5.1 Hypothesis

Prior to defining the experimental hypotheses, we uti-
lized the “Goal/Question/Metric” (GQM) template
[34] to explicitly define the experimentation goal G1
as follows and its regarding evaluation questions and
metrics.

Goal G1 : “To analyse the efficiency of the

proposed method for the purpose of selecting
the most appropriate services among all candi-
date services based on user’s preferences”.

Question Q1 : Does the method show any improve-
ment in selecting the services that are mostly aligned
with user’s preferences and improves user satisfaction?

• Metric M1.1: Fitness. Fitness shows how much
the output model satisfies user’s preferences. Fit-
ness has direct relationship with user satisfaction.

Question Q2 : Does the method show any improve-
ment in scalability?

• Metric M2.1: Execution time. Execution time
shows the length of time taken for selecting ser-
vices and producing a composition model in com-
mon business process languages like WS-BPEL.
As show in Figure 4, we measure the execution
time changes with increasing the number of tasks
from 10 to 100 and with increasing the number
of candidate services from 5 to 50.
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Figure 4. Changes in the Number of Tasks and the Number

of Candidate Services.

As shown in Table 2, we evaluated the efficiency
and scalability of the proposed method for QoS-based
service selection. Particularly, we aimed at evaluating
the fitness and the execution time of the method.

This work was compared with GSA-based [23] (i.e.
our previous work) and PSO-based service selection
methods. We did not consider genetic algorithm (GA)
in our comparison, since the PSO algorithm is better
in finding the optimized selection with higher fitness
than the genetic algorithm [35]. The measurements
have been conducted on an Intel Celeron CPU 2.2
GHz PC with 1GB of RAM running Ubuntu 12.4LTS
and JDK 1.7.0-17. As shown in Figure 4, the number
of tasks changes from 10 to 100, and the number of
candidate services changes from 5 to 50 depending on
the experiment.

We used web service QoS dataset released by Al-
Masri et al. [36] to evaluate service selection methods
in performing users’ requests with different preferences.
This dataset includes 5,000 web services with the
measurements of their quality of services. The selected
QoS parameters that are used in our experiments are
listed below:

• Response time (ms): Time taken to send a request
and receive a response

• Availability (%): The ratio of the number of suc-
cessful invocations to the number of total invoca-
tions

• Reliability (%): The ratio of the number of error
messages to the number of total messages

The quality parameters are classified in three levels
including Bronze (qos weight: 0.2), Silver (qos weight:
0.3) and Gold (qos weight: 0.5). In our experiments,
we generated weights of quality parameters randomly.

5.2 User Satisfaction

Since heuristic algorithms (e.g. GSA, PSO, GA) de-
pend on the initial population and the number of iter-
ations, we measured fitness value in below scenarios:

Figure 5. Fitness Changes, With Increasing the Number of
Iterations. (No. of Tasks=10; No. of Candidate Services=5;
No. of Iterations: From 10 to 100).

A)Fitness changes, with increasing the num-
ber of iterations from 10 to 100

First scenario was performed 10 times with differ-
ent user’s preferences. We considered 10 tasks and 5
candidate services for each task. As shown in Figure 5,
HMM produced the most optimized sequence of web
services that resulted in highest fitness value in each
experiment. Since the Viterbi algorithm is a dynamic
programming technique, the fitness value does not de-
pend on the number of iterations. GSA moves much
more quickly towards the convergence point (i.e. find-
ing the fitter composite web service) in comparison
with the PSO algorithm.

B) Fitness changes, with increasing the num-
ber of candidate services from 5 to 50

In second scenario, we measured the changes of fit-
ness value with increasing the number of candidate
services. The results are shown in Figure 6. The num-
ber of candidate services increases the population of
candidate solutions and affects the final result. This
scenario was also measured in 10 experiments with dif-
ferent user’s preferences. In each experiment, the GSA
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Table 2. The GQM Metrics for Evaluation.

Goal Question Metric Description

G1

Q1: User satisfaction M1.1: Fitness

Fitness changes, with increasing the number of iterations from

10 to 100. (No. of tasks=10; No. of candidate services=5)

Fitness changes, with increasing the number of candidate

services from 5 to 50. (No. of tasks=10; Iterations=100)

Q2: Scalability M2.1: Execution time

Execution time changes, with increasing the number of tasks
from 10 to 100. (Iterations=100; No. of candidate services=5)

Execution time changes, with increasing the number of candidate

services from 5 to 50. (No. of tasks=10; Iterations=100)

Figure 6. Fitness Changes, With Increasing the Number of

Candidate Services (C.S.). (No. of Tasks=10; Iterations=100;
No. of Candidate Services: From 5 to 50).

algorithm and the PSO algorithm were performed in
100 iterations. Although increasing the number of can-
didate services improves the fitness in both GSA and
PSO algorithms, HMM is still more effective in se-
lecting web services and producing composite models
which are more aligned with user’s preferences.

5.3 Scalability

Figure 7 shows changes of execution time with increas-
ing the number of tasks. In this experiment we consid-
ered 5 candidate services for each task. As shown in
Figure 7, when a given process has 100 tasks, there is

Figure 7. Execution Time Changes, With Increasing the Num-
ber of Tasks. (Iterations=100; No. of Candidate Services=5;
No. of Tasks: From 10 to 100).

Figure 8. Execution Time Changes, With Increasing the Num-

ber of Candidate Services. (No. of Tasks=10; Iterations=100;
No. of Candidate Service: From 5 to 50).

a negligible value of 0.15 second gap between perform-
ing HMM and performing the least time consuming
heuristic algorithm, i.e., PSO. Furthermore, most of
the business processes have less than 100 tasks. There-
fore we could claim that our proposed method is still
applicable.

Figure 8 shows changes of execution time with in-
creasing the number of candidate web services. In
each experiment, the GSA algorithm and the PSO
algorithm were performed in 100 iterations.

In our proposed method, web services are modelled
with hidden states and tasks are modelled with obser-
vations. So, for each task, candidate services are the
hidden states that have an emission probability to the
target task. Since the time complexity of the Viterbi
algorithm has direct relationship with the square of
the number of hidden states, our proposed method is
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mostly efficient in cases that there is less than ∼ 20
candidate services for each task (see Figure 8).

In GSA and PSO algorithms, the number of can-
didate services increases the population of candidate
solutions and affects the execution time. As shown in
Figure 8, these types of algorithms are able to consider
hundreds of candidate services in performing user’s
requests.

This section could be concluded as follows. Our
method achieves the maximum fitness in each exper-
iment. Although our method is a little more time-
consuming than the heuristic methods (e.g. GA, PSO,
and GSA), it selects most appropriate services in a
reasonable time even when the number of web services
increases. The comparison of HMM with heuristic al-
gorithms in service selection filed shows that HMM is
a useful method, which improves the lacks of heuristic
algorithms like fitness in a reasonable time.

6 Conclusion

In this paper, we applied Hidden Markov Model for the
QoS-based service selection problem. We presented
the method in following steps: Modelling, Learning,
QoS-based selection. In modelling step, the HMM
definition of service selection problem was described.
The output HMM from the modelling step is initialized
in learning step by supervised or unsupervised learning
methods. The Viterbi algorithm is used in QoS-based
selection step to find the most appropriate services in
reasonable time.

We compared this work with GSA-based service
selection method and PSO-based service selection
method. Our method achieves the maximum fitness in
each experiment. Although our method is a little more
time-consuming than the heuristic methods (e.g. GA,
PSO, and GSA), it selects most appropriate services
in a reasonable time even when the number of web
services increases.

In future, we would use unsupervised approaches
like Maximum Likelihood Estimation or Viterbi Train-
ing to overcome continues modifications in HMM in-
cluding: available web services, existing tasks, transi-
tion probabilities, and output probabilities.
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