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A B S T R A C T

Digital audio watermarking is mainly used for ownership protection of digital

audio. In this research, an audio watermarking method is presented which can

be adopted in real-time situations due to its high speed in both embedding

and detecting stages. This approach has a higher payload in comparison

with similar recent approaches. In the proposed algorithm, which uses a

time-domain synchronization, to embed the watermark, the audio signal is

first split into a number of blocks. Then the watermark is embedded into the

FFT components of audio signal with greater magnitudes. Unlike common

audio watermarking methods that use the 1-bit embedding approach, in the

proposed scheme, a 2-bit embedding approach is presented which doubles the

embedding payload compared to a number of similar works. The evaluation

results on different audio signals demonstrate that the new scheme is faster and

more transparent compared to its counterparts. The presented watermarking

is found robust enough against the common attacks like additive noise, MP3

compression, low pass filtering, re-sampling and re-quantization. Using FPGA

implementation/evaluation, the time complexities of the major parts of the

proposed algorithm are reported.

c© 2015 JComSec. All rights reserved.

1 Introduction

Nowadays, broadband Internet connections and nearly
error-free transmission of data facilitate the distribu-
tion of multimedia files. Since 1992, the number of pub-
lished articles on digital watermarking has drastically
increased. Although these algorithms primarily were
developed for still images and video streams, interest
and research on audio watermarking commenced later.

In a sense, audio watermarking methods can be
categorized into two classes; “time domain and “fre-
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quency domain. In both classes, the main issues are
transparency, payload, reliability and robustness. How-
ever, recent real-time applications of audio water-
marking have forced the designers to take the (hard-
ware/software) implementation complexity into con-
sideration as well.

Using digital instruments in live concerts and Desk-
top Music (DTM) has become a common practice
today. Unfortunately these artistic productions are
distributed illegally through the Internet and played
via digital devices. This illegal duplication and distri-
bution causes great financial losses due to infringing
the intellectual property rights of the producers and
performers. This is why real-time audio watermarking
has recently become an attractive technology promis-
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ing to solve this problem [1]. In other real-time appli-
cations such as IP telephony, where security is a criti-
cal issue, audio watermarking can help to perform se-
cure identification/authentication and authorization,
and make sure that the confidentiality, integrity and
non-denial/non-repudiation of the dialog are met [2].
Application of real-time audio watermarking can be
easily extended to other aspects of the daily life such
as telephone banking and health care systems where
multimedia integrity and authenticity is very impor-
tant to the success of the services. In order to use au-
dio watermarking in a wider range of applications, the
payload should be increased and at the same time the
other aspects of the algorithm should be kept intact
as much as possible. According to IFPI [3], any digital
watermarking algorithm needs to have more than 20
bps data payload for watermark. Obviously, water-
marking techniques with higher payloads potentially
lead to more complicated watermarks that are very
unlikely to be removed or altered by various attacks.

In [4] a robust and high quality audio watermark-
ing is proposed in time domain that modifies the am-
plitude in low frequencies. It first divides the audio
signal into a group of samples. Then, using differen-
tial average of absolute amplitude in a group of sam-
ples it can embed the watermark into the host signal.
This method periodically recalculates the thresholds
based on Human Auditory System (HAS) and the
audio signal’s properties. This dynamic threshold ad-
justment increases the algorithm’s computing com-
plexity, hence making it inappropriate for real-time
applications. Researchers in [5] propose a real-time
audio watermarking technique using wavetables. In
this method, Pulse Code Modulation (PCM) wave-
forms are held in wavetables. The results presented
in the paper indicate that this algorithm is faster and
more transparent compared to other algorithms. In
addition, the algorithm is reported to be reasonably
robust against attacks such as additive noise, MP3
compression and low-pass filtering. However, the au-
thors do not include the payload of their audio wa-
termarking scheme in the manuscript. In [6] a blind
audio watermarking method is proposed using self-
synchronization approach, where the synchronization
bits are embedded into the time domain by modify-
ing the audio signal’s time samples. This technique
embeds the watermark bits into the signal’s Discrete
Cosine Transform (DCT) components. The simulation
results shown in the paper reveal that the proposed
method cannot be considered robust enough against
the conventional attacks. The method presented in [7]
embeds the synchronization and watermark bits into
the low frequency components of the wavelet trans-
form. Although this method is more robust against
the common attacks, its Signal-to-Noise Ratio (SNR)

is not high enough producing audible noises in the wa-
termarked output signal. The authors in [8] propose
a fast audio watermarking scheme where the synchro-
nization and the watermark bits are embedded into the
time and the FFT domains, respectively. This method
seems to be robust against the attacks and the sig-
nal processing operations. Since the synchronization
embedding process is carried out in the time domain,
the proposed watermarking is suitable for real-time
applications; however it has the payload of 30bps that
is not enough in comparison with similar audio wa-
termarking methods. In [9], the synchronization bits
are embedded into the low frequency components of
the signal’s Discrete Wavelet Transform (DWT). To
embed the watermark bits, first, DWT transform is
applied to the audio signal and then DCT transform
is applied to the low frequency components resulted
from the preceding transform. Then the watermark
bits are embedded into the DCT components. Since
synchronization bits are embedded into the DWT do-
main, this algorithm look robust enough against the
common attacks. However, detecting the synchroniza-
tion bits in this algorithm is a slow process making it
inappropriate for real-time applications. In a recent
watermarking approach [10], the authors present a
blind and robust audio watermarking against common
signal processing attacks. Although the payload and
the transparency reported in the article is impressive,
using the DCT and the SVD transforms makes the
design inappropriate for real-time applications. An-
other new watermarking technique is developed by
Xiang et al in [11]. The algorithm looks robust with
improved perceptual quality; however, the authors
use the outdated measure SNR instead of Objective
Difference Grade (ODG) to evaluate the transparency.
The article also lacks a quantitative evaluation of the
payload of the proposed watermarking. One of the lat-
est high-payload audio watermarking algorithms [12]
which is reported robust against both general signal
processing and desynchronization attacks, is too slow
(due to using complex TLW and SVD transforms) for
real-time environments.

In this article, a time domain synchronization al-
gorithm is adopted which is suitable for real-time ap-
plications. To embed the watermark, the audio signal
is first split into several blocks. Then the watermark
bits are embedded into the FFT components with the
largest magnitudes. This way, without significant at-
tenuation in SNR, ODG and Bit Error Rate (BER),
the payload of the watermark embedded into the host
signal increases twofold compared to similar counter-
parts.
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Figure 1. Embedding Segments [8]
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Figure 2. Embedding Scheme

2 Proposed AudioWatermarking

The presented audio watermarking algorithm is based
on the scheme introduced in [8]. Since an audio signal
contains great amount of data itself, if any watermark-
ing approach wants to embed the watermark bits into
the audio signal all at once, a vast (and mostly imprac-
tical) volume of processing memory and functional
units are required. That is why in the proposed wa-
termarking algorithm, the audio signal is divided into
small blocks and then the watermark bits are inserted
into these blocks. As shown in Figure 1, this approach
embeds the synchronization bits at the beginning of
the watermark bit pattern in order to make sure that
the position of the watermark can be detected. In the
proposed algorithm, as shown in Figure 2, the syn-
chronization bits are embedded into the time domain
samples and the watermark bits into the FFT compo-
nents of the host signal.

2.1 Embedding Synchronization Bits

In the proposed audio watermarking approach, the
audio samples are assumed to be normalized in in-
terval [−1, 1]. If each sample is represented using n
bits, then the signal can be normalized in the inter-
val by dividing each sample by 2n−1. As illustrated
in Figure 1, the synchronization code is imbedded
into L1 samples of the host audio signal. If nsyn sam-
ples are used for embedding each synchronization
bit, in order to embed an l-bit synchronization code,
L1 = l · nsyn samples are required. The algorithm

Figure 3. Embedding sichronization bits [8]

for embedding the synchronization bits is as follows.
To embed synchronization bit “1” into nsyn samples
of the host signal, the inner samples are increased
so that their average becomes greater than that of
the extreme points (the first and the last samples).
In order to embed bit “0”, the inner samples are de-
creased so that their average becomes smaller than
that of the extreme points (Figure 3). It is assumed
that the synchronization bits are intended to be em-
bedded into the time samples sp, sp+1, · · · , sp+nsyn−1
of the host audio signal. a number of notations are
listed here to make the readability of the paper easier:

s signal sampled in time domain

sp p-th sample of host signal

sint average of inner samples

sext average of extreme samples

δmin minimum distance from sext

ϕ distortion introduced with respect to sext

nsyn number of consecutive samples for embedding
a synchronization bit

Now, the proposed embedding method can be ex-
pressed as Algorithm 1 [8]

In this method, the 16-bit famous Barker code
“1111100110101110 is used as the synchronization
code and the embedding parameters are selected as
δmin = 10−3, ϕ = 0.05 and nsyn = 4 [8] .

2.2 Embedding Watermark

Unlike most conventional audio watermarking meth-
ods which use the 1-bit embedding approach, in the
proposed watermark embedding scheme, a novel 2-bit
embedding algorithm is proposed that embeds 2-bit
string “00, “01, “10 or “11 instead of bit “0 or “1. If
the watermark consists of L2 samples, as shown in
Figure 1, and if each watermark bit is embedded in L3

samples of the host audio signal, then the watermark
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Algorithm 1 Embedding Synchronization Bits

sint := 1
nsyn−2

p+nsyn−2∑
j=p+1

sj

sext :=
sp+sp+nsyn−1

2

For j := p to p+ nsyn − 1 do

s′j := sj

EndFor

• To embed a “1”:

If sint < sext + δ then

d := sext + δ − sint
For j := p+ 1 to p+ nsyn − 2 do

s′j := sj + d

EndFor

EndIf

• To embed a “0”:

If sext < sint + δ then

d := sint + δ − sext
For j := p+ 1 to p+ nsyn − 2 do

s′j := sj − d
EndFor

EndIf

length L2 contains |w| · L3 samples where |w| is the
watermark length in bits and L3 = 512 [8] . The host
signal is assumed a mono audio signal; however, this
algorithm works for stereo audio signals as well. In
this method to embed each watermark bit into the
FFT coefficients, a block of L3 coefficient samples is re-
quired. To obtain these, the FFT transform is applied
on blocks of L3 samples each. In this paper, s and S
represent the audio signal sampled in the time and in
the FFT domain respectively. Now, a set of suitable
frequencies of S should be chosen for embedding two
bits of the watermark. Since the FFT function is sym-
metric, SL3−k = Sk for k = 0, 1, 2, · · · , L3

2 − 1. This
means that the second half of the FFT coefficients se-
quence (SL3−k) equals the complex-conjugate of the
first half of the sequence (S∗L3−k); hence the second
half of S does not need to be calculated and is dis-
carded by the watermark embedding process. In addi-
tion, S0 is not suitable for embedding the watermark
bits and therefore is ignored [8]. To continue the pro-
cess, the elements of sequence S1, S2, · · · , SL3

2 −1
are

sorted in ascending order to construct the sequence
S′1, S

′
2, · · · , S′L3

2 −1
such that the new elements satisfy

|S′1| ≤ |S′2| ≤ |S′3| ≤ · · · ≤ |S′L3

2 −1
|

where |S′i| is the magnitude of S′i. In order to em-
bed two watermark bits, five consecutive elements

S′m, S
′
m+1, S

′
m+2, S

′
m+3, S

′
m+4 with 1 < m < L3

2 − 4
are chosen. Symbol m represents the starting posi-
tion where the watermark bits are embedded in the
FFT coefficients. In the proposed approach, value
of the embedding position m provides the tradeoff
between transparency and robustness of the audio
watermarking algorithm such that larger (smaller)
m leads to less (more) transparency and more (less)
robustness. In the presented experiments m = 250
is selected. Having represented |S′k| by symbol Mk

(for simplicity), to establish the embedding criteria,
thresholds A = Mm+4−Mm+3, B = Mm+3−Mm+2,
C = Mm+2 −Mm+1 and D = Mm+1 −Mm are de-
fined and in order to embed bit strings “00”, “01”,
“10” and “11”, the following criteria are followed:

If (B ≥ αA AND D ≥ βC) then embed “00”

If (A ≥ αB AND D ≥ βC) then embed “01”

If (B ≥ αA AND C ≥ βD) then embed “10”

If (A ≥ αB AND C ≥ βD) then embed “11”

where α and β are coefficients defined to avoid possible
overlaps between the embedding criteria. In case any
of the above conditions is not satisfied, spectrum S′

needs to be modified as follows

• To embed “00”,

S′m+3[new] = Mm+2+αMm+4

(α+1)Mm+3
S′m+3

S′m+1[new] = Mm+βMm+2

(β+1)Mm+1
S′m+1

• To embed “01”,

S′m+3[new] = Mm+4+αMm+2

(α+1)Mm+3
S′m+3

S′m+1[new] = Mm+βMm+2

(β+1)Mm+1
S′m+1

• To embed “10”,

S′m+3[new] = Mm+2+αMm+4

(α+1)Mm+3
S′m+3

S′m+1[new] = Mm+2+βMm

(β+1)Mm+1
S′m+1

• To embed “11”,

S′m+3[new] = Mm+4+αMm+2

(α+1)Mm+3
S′m+3

S′m+1[new] = Mm+2+βMm

(β+1)Mm+1
S′m+1

In each case, these changes should be applied to the
corresponding Sk and its complex-conjugate. However,
it can be easily shown mathematically that unlike
the algorithm presented in [8], new S′m+1 and S′m+3

still conform to condition |S′m| ≤ |S′m+1| ≤ |S′m+2| ≤
|S′m+3| ≤ |S′m+4|. As a result, in terms of the computa-
tion load, the proposed algorithm shows a significant
advantage over the design presented in [8].
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2.3 Synchronization Detection

Like most audio watermarking algorithms, in the pro-
posed scheme, existence of a secret key guarantees the
security of the method. The secret key includes infor-
mation such as the lengths of the watermark and the
synchronization parts in bit, number of the required
samples for the watermark and the synchronization bit
patterns, and m (watermark bits embedding position).
In the proposed algorithm, to extract the watermark
bits, first the exact location of the synchronization bits
are found in the watermarked signals and then the wa-
termark bits are extracted from L2 samples after the
synchronization bit pattern. If the watermark length
is not fixed, then in the embedding process, bit pat-
tern “01111110 is attached to the beginning and the
end of the watermark to boost the confidence of the
watermark detection and the extraction process [8].

To detect each bit (either “0” or “1”) of the syn-
chronization pattern with l bits, the following pro-
cedure needs to be followed. In this procedure, for
every bit, nsyn samples of the watermarked signal are
processed. To perform this, a sample window with
the size of L1 = l · nsyn is chosen and from the be-
ginning of the watermarked signal in the time do-
main, the samples inside the window are divided into
nsyn consecutive non-overlapped sets. Having defined
tp, tp+1, tp+2, · · · , tp+nsyn−1 to represent nsyn consecu-
tive samples of the watermarked signal in the time do-
main, the synchronization detection process for each
bit continues as Algorithm 2 [8]

Algorithm 2 Synchronization Detection

tint := 1
nsyn−2

p+nsyn−2∑
j=p+1

tj

text :=
tp+tp+nsyn−1

2

If tint > text then “1” is detected

else “0” is detected

EndIf

In this procedure, tint represents the average of the
inner samples, whereas text shows the average of the
extreme points. The process reveals that if the average
of the inner points is more than the average of the ex-
treme points, the bit is detected as “1”, otherwise as
“0”. This operation needs to repeat l times to generate
an l-bit synchronization candidate for the sample win-
dow, which is then compared to the synchronization
bit string in the secret-key. If they match, it means
that the detection procedure has found the exact lo-
cation of the synchronization pattern; otherwise the
algorithm shifts the window one sample and repeats
until the end of the signal. Since every two consecutive

16-bit windows share 15 synchronization bits, the syn-
chronization detection rate can be considerably accel-
erated through a recursive technique as follows. First,
nsyn binary strings are defined and indexed from 1 to
nsyn. Then for each window shift, from the 1st to the
(nsyn)-th, the generated synchronization bit pattern
is stored in the corresponding binary string. Now for
any shift with the number beyond (nsyn)-th, the algo-
rithm assigns the bit pattern found in the string with
the index equal to the remainder of dividing the shift
number by nsyn. Finally, the bit pattern is shifted one
bit to the left and the bit detected from nsyn samples
is used as the string’s least significant bit (LSB).

2.4 Watermark Extraction

Once the synchronization bit string is detected, the
watermark extraction process is carried out on L2 =
|w|L3 samples of the watermarked signal starting right
after the samples used for synchronization extraction.
For this purpose, first the FFT is applied to these L2

samples while the second half of the coefficients gener-
ated is ignored (see Section 2.2). Then the remaining
coefficients are sorted in ascending order of magnitude,
and a series of 2-bit strings are extracted as follows.
Having defined M ′k with k = 1, 2, · · · , L3

2 − 1 as the
magnitudes of the first half of the FFT coefficients,
thresholdsA′ = M ′m+4−M ′m+3,B′ = M ′m+3−M ′m+2,
C ′ = M ′m+2 −M ′m+1 and D′ = M ′m+1 −M ′m are de-
fined and the following watermark extraction scheme
is used:

If (A′ ≤ B′ AND C ′ ≤ D′) then extract “00”

If (A′ > B′ AND C ′ ≤ D′) then extract “01”

If (A′ ≤ B′ AND C ′ > D′) then extract “10”

If (A′ > B′ AND C ′ > D′) then extract “11”.

3 Performance ofProposedAlgorithm

In this article, the newly proposed real-time audio
watermarking method is evaluated for payload capac-
ity in terms of bit number (the maximum number of
watermark bits embedded into one second of the host
signal), robustness against the conventional attacks
in terms of BER, transparency in terms of SNR and
ODG and speed in terms of samples per second.

As mentioned in Section 2.2, to embed the water-
mark at the beginning and at the end of the frame,
delimiters need to be attached to the watermark bit
pattern. Next, a Reed-Solomon ECC has to be applied
to the watermark. If delimiters and l (length of syn)
are both 16 bits long and nsyn is set to 4 samples, sam-
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Table 1. BER of different schemes after MP3 (128kbps) attack

for a variety of audio files

Audio file Audio watermarking scheme

[8] Proposed Proposed Proposed Proposed

α = 4 α = 3 α = 3 α = 4

β = 30 β = 7 β = 10 β = 10

m = 249 m = 250 m = 250 m = 250

Floodplain 11.94 11.38 10.1 9.81 9.63

Stop Payment 11.94 15.62 12.77 12.89 11.44

Rust 14.03 18.87 17.13 15.04 16.60

The Firm 36.07 31.99 28.68 28.33 27

Sonati 23.54 30.37 27.52 28.54 29.38

pling rate is chosen 44100 samples per second, and the
watermark length after the Reed-Solomon (255, 249)
encoding equals 104, then

payload = 56−16
(16×4+52×512)÷44100

∼= 66.09

As expected, due to embedding two watermark bits
in L3 = 512 samples of the audio signal, the payload
of the proposed algorithm is double the one reported
in [8], where only one watermark bit is embedded into
the same number of samples.

In this article, in order to assess the robustness of
the proposed method, a number of attacks common in
real-time environments such as 128 kbps MP3 (using
LAME encoder tool), additive noise (using the Stir-
Mark benchmark), RC-low pass filtering (using the
StirMark benchmark with the filter cutoff frequency
of 10 kHz) and re-sampling (using MATLAB sam-
pled and resampled at 22050 and 44100 samples per
second respectively) are applied to the watermarked
audio signal. Tables 1, 2, 3, 4 and 5 show BER after
MP3, additive noise, low pass filtering, re-sampling
and re-quantization attacks respectively with no ECC
and for both the proposed method and the algorithm
presented in [8]. The tables clearly demonstrate that
while the payload of the new scheme is twice that of
its counterpart, its robustness is still within the ac-
ceptable range for an audio watermarking algorithm.

In the current research, measures SNR and ODG
are used to show to what extent the proposed audio
watermarking algorithm is transparent. SNR can be
calculated as

SNR(A, Ã) = 10 log10

∑N

n=1
a2(n)∑N

n=1
(a(n)−ã(n))2

(1)

where A represents N samples of the original audio
signal while Ã is the watermarked version of the same
signal. Table 6 which compares SNR of the proposed
method (with various α, β and m) with that of [8]

Table 2. BER of different schemes after additive noise attack

for a variety of audio files

Audio file Audio watermarking scheme

[8] Proposed Proposed Proposed Proposed

α = 4 α = 3 α = 3 α = 4

β = 30 β = 7 β = 10 β = 10

m = 249 m = 250 m = 250 m = 250

Floodplain 1.39 3.49 1.97 2.26 1.8

Stop Payment 8.81 11.9 9.34 8.42 9.11

Rust 14.84 17.07 14.57 13.29 11.73

The Firm 20.99 21.19 19.39 19.22 19.68

Sonati 2.55 5.16 4.00 2.90 3.19

Table 3. BER of different schemes after re-sampling attack
for a variety of audio files

Audio file Audio watermarking scheme

[8] Proposed Proposed Proposed Proposed

α = 4 α = 3 α = 3 α = 4

β = 30 β = 7 β = 10 β = 10

m = 249 m = 250 m = 250 m = 250

Floodplain 0 0 0 0 0

Stop Payment 0 0 0 0 0

Rust 2.43 5.11 2.72 2.72 2.55

The Firm 3.59 5.34 4.41 4.41 4.29

Sonati 0.11 0.05 0.05 0.05 0.05

Table 4. BER of different schemes after RC-Low pass filter
for a variety of audio files

Audio file Audio watermarking scheme

[8] Proposed Proposed Proposed Proposed

α = 4 α = 3 α = 3 α = 4

β = 30 β = 7 β = 10 β = 10

m = 249 m = 250 m = 250 m = 250

Floodplain 1.27 4.23 2.20 1.91 1.97

Stop Payment 3.71 7.54 5.11 4.52 4.23

Rust 6.14 11.9 8.3 8.13 7.72

The Firm 6.84 10.97 10.22 9.93 10.10

Sonati 2.08 6.79 5.69 5.63 4.76

indicates that in spite of twice the payload capacity,
new SNR is still within the acceptable range (greater
than 20 dB [7]) for different input audio signals. The
audio files are selected from different music genres
such as Rock, Pop and Classic all 10 seconds long.

To extend the evaluation space, SNR and payload
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Table 5. BER of different schemes after Re-quantization attack

for a variety of audio files

Audio file Audio watermarking scheme

[8] Proposed Proposed Proposed Proposed

α = 4 α = 3 α = 3 α = 4

β = 30 β = 7 β = 10 β = 10

m = 249 m = 250 m = 250 m = 250

Floodplain 0.003 0.007 0.006 0.005 0.005

Stop Payment 0.019 0.035 0.029 0.026 0.029

Rust 0.081 0.081 0.081 0.081 0.081

The Firm 0.13 0.16 0.14 0.14 0.14

Sonati 0.001 0.007 0.003 0.002 0.002

Table 6. SNR of different schemes for varieties of parameters

and audio files

Audio file Audio watermarking scheme

[8] Proposed Proposed Proposed Proposed

α = 4 α = 3 α = 3 α = 4

β = 30 β = 7 β = 10 β = 10

m = 249 m = 250 m = 250 m = 250

Floodplain 24.75 24.63 21.45 21.33 20.80

Stop Payment 22.88 22.53 21.21 21.09 20.72

Rust 26.55 25.15 22.42 22.32 21.81

The Firm 26.12 25.73 24.65 24.52 23.95

Sonati 21.84 23.39 23.13 23.11 23.05

Table 7. SNR and capacity of different schemes

AW Content Sync SNR Capacity

scheme (dB) (bit)

[13] Short Clip Yes 43.1 NA

[14] Song No 25 43

[8] Song+Quartet+SQAM Yes 25.7 33.09

[10] Song+Quartet+SQAM Yes 30 43

Proposed Song+Quartet+SQAM Yes 24.08 66.09

α = 4

β = 30

m = 249

capacity of the proposed scheme along with those of
four different methods previously published in the
literature are listed in Table 7. The table again shows
that the payload capacity is nearly doubled while new
SNR is still large enough (above 20 dB).

In this study, ODG is computed using Perceptual
Evaluation of Audio Quality (PEAQ) algorithm spec-

Table 8. ODG of different schemes for variety of audio files

Audio file Time Watermark [10] [8] Proposed Proposed

(sec) Length α = 4 α = 3

(bit) β = 30 β = 10

m = 249 m = 250

Rust 2:33 117 -0.79 -0.1 -0.025 -0.131

Floodplain 3:13 146 -0.77 0.0 -0.027 -0.03

Stop 2:09 99 -0.52 0.0 -0.022 -0.116

Payment

The Firm 0:10 8 -0.28 0.0 0.0 0.0

Table 9. Synchronization detection complexity of different

schemes

AW Detection speed Time spend per sample

scheme (samples per second) (second)

[7] 107.13 0.0093

[8] 1010.1 0.00099

[9] 285.7 0.0035

Proposed 4040.4 0.00025

α = 4

β = 30

m = 249

ified in ITU BS.1387-1 [15]. ODG can take value 0,
-1, -2, -3 and -4 that represent imperceptible, percep-
tible but not annoying, mildly annoying, annoying
and very annoying respectively [16]. ODG of the pro-
posed algorithm is compared with that of [8] and [10]
in Table 8. The results indicate while improved in the
other aspects, the proposed method is imperceptible
in different cases as well.

As mentioned earlier, only high speed audio water-
marking algorithms are applicable in real-time situ-
ations. The time complexity (speed) of the synchro-
nization detection process, which is the most time-
consuming step in any audio watermarking method,
is shown in Table 9 in samples per second for the
proposed and a number of recent audio watermark-
ing schemes. The speed evaluation is performed us-
ing MATLAB 2009 on a desktop computer with MS-
Windows operating system, 2.53 GHz processor and
3 GB RAM. The results reveal that the software im-
plementation of the synchronization detection unit of
the proposed algorithm (hence roughly the whole au-
dio watermarking process) is at least four times faster
than those of the similar algorithms.

For more clarification, the time complexities of
the new algorithm and the method presented in [8]
are also compared in Table 10 under the same hard-
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Table 10. Watermark embedding complexity of different

schemes

AW Embedding speed Time spend per bit

scheme (bits per second) (second)

[8] 338.03 0.003

Proposed 1171.43 0.00085

α = 4

β = 30

m = 249

Table 11. Speed of synchronization detection unit of the
proposed algorithm on different FPGAs

FPGA Package Device Time spent per sample

family (nano second)

Spartan 3 PQ208 XC3S50 11.65

Spartan 6 TQG144 XC6SLX4 7.541

Virtex 4 SF363 XC4VFX12 7.07

Virtex7 FFG1925 XC7V2000T 4.37

ware/software condition. It can be easily found from
the table that the proposed watermark embedding al-
gorithm is almost three times faster than that of in [8].

To have a more realistic timing estimation, the syn-
chronization code detection unit of the proposed audio
watermarking algorithm is described using VHDL and
implemented on a variety of FPGA-based hardware
platforms and the speeds are presented in Table 11.
The reader can easily infer from the delays reported in
the table that the proposed algorithm is well-designed
for real-time and fast applications.

4 Conclusion

A high payload method for real-time audio watermark-
ing is presented here. The payload capacity of the
proposed approach is greater than that of a number
of recent similar works in this area; more specifically
is double the payload of the closest counterpart in-
troduced in [8]. The computation load is reduced in
the presented method compared to what is reported
in [8]. Estimations using the available evaluation tools
indicate that the proposed algorithm shows a proper
robustness against the most common signal processing
attacks and in some cases it is more robust compared
to similar methods recently published. The scheme
presented in this paper has proper SNR and ODG;
hence it does not generate audible noise when listen-
ing to the host audio signal. Major modules of the
proposed audio watermarking algorithm are imple-
mented in hardware and software and evaluated for

speed. The result proves that the new approach is fast
enough to be appropriate in practical and real-time
applications.
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[8] D Meǵıas, J Serra-Ruiz, and M Fallahpour. Ef-
ficient self-synchronised blind audio watermark-
ing system based on time domain and fft am-
plitude modification. Signal Processing, 90(12):
3078–3092, 2010.

[9] H Nikmehr and S T Hashemy. A new approach to
audio watermarking using discrete wavelet and
cosine transforms. In 1st International Confer-
ence Communications Engineering, pages 1–10,
2010.

[10] B Y Lei, Y Soon, and Zh Li. Blind and robust
audio watermarking scheme based on svd–dct.
Signal Processing, 91(8):1973–1984, 2011.

[11] Y Xiang, I Natgunanathan, D Peng, W Zhou,
and Sh Yu. A dual-channel time-spread echo
method for audio watermarking. Information



April 2015, Volume 2, Number 2 (pp. 119–127) 127

Forensics and Security, IEEE Transactions on, 7
(2):383–392, 2012.

[12] B Lei, Y Soon, F Zhou, Zh Li, and H Lei. A ro-
bust audio watermarking scheme based on lifting
wavelet transform and singular value decomposi-
tion. Signal Processing, 92(9):1985–2001, 2012.

[13] X-Y Wang and H Zhao. A novel synchronization
invariant audio watermarking scheme based on
dwt and dct. Signal Processing, IEEE Transac-
tions on, 54(12):4835–4840, 2006.

[14] K Hyunho, K Yamaguchi, B Kurkoski, K Yam-
aguchi, and K Kobayashi. Full-index-embedding
patchwork algorithm for audio watermarking. IE-
ICE Transactions on Information and Systems,
91(11):2731–2734, 2008.

[15] J B Kanade and B S Kumar. Comparison
of different wavelet decomposition techniques
for peaq model to assess the quality of audio
codecs. In Electronics and Communication Sys-
tems (ICECS), 2015 2nd International Confer-
ence on, pages 252–258. IEEE, 2015.

[16] ITU-R Recommendation BS.1387. Method for
Objective Measurements of Perceived Audio
Quality (PEAQ), 1998.

Ramin Almasi was born in Bandarabbas,

Hormozgan, Iran in 1986. He received the BSc
degree in Computer (Hardware) Engineering

from Isfahan University of Technology and

the MSc degree in Computer Architecture
Engineering from University of Isfahan in 2008

and 2012 respectively. He is currently working
toward the PhD degree with University of

Isfahan. From 2012 to 2014, he worked as a network advisor

at Hormozgan Power Plant.

Hooman Nikmehr received his BSc in Elec-
tronic Engineering and MSc in Computer Ar-

chitecture Engineering both from University
of Tehran, Tehran, Iran, in 1992 and 1997,
respectively, and PhD degree in Computer

Engineering from the University of Adelaide,
Adelaide, Australia, in 2005. He is an Assis-
tant Professor with the Department of Com-

puter Architecture, University of Isfahan, Isfahan, Iran. His
current research interests include VLSI, digital arithmetic,

computer architecture, reconfigurable hardware design and

low-power design.


	1 Introduction
	2 Proposed Audio Watermarking
	2.1 Embedding Synchronization Bits
	2.2 Embedding Watermark
	2.3 Synchronization Detection
	2.4 Watermark Extraction

	3 Performance of Proposed Algorithm
	4 Conclusion

