
Journal of Computing and Security

January 2015, Volume 2, Number 1 (pp. 3–20)

http://www.jcomsec.org

JHAE:ANovel Permutation-BasedAuthenticated Encryption

Mode Based on theHashMode JH

Javad Alizadeh a,∗, Mohammad Reza Aref b, Nasour Bagheri c,d, Alireza Rahimi a

aFaculty of Communication and Information Technology, Imam Hossein University, Tehran, Iran.
bInformation Systems and Security Lab. (ISSL), Electrical Eng. Department, Sharif University of Technology, Tehran, Iran.
cElectrical Engineering Department of Shahid Rajaee Teacher Training University, Tehran, Iran.
dSchool of Computer Science of Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

A R T I C L E I N F O.

Article history:

Received: 12 April 2014

Revised: 15 December 2015

Accepted: 9 January 2016

Published Online: 7 February 2016

Keywords:

Authenticated Encryption,
Provable Security, Privacy,

Integrity, CAESAR

A B S T R A C T

Authenticated encryption (AE) schemes provide both privacy and integrity of

data. CAESAR is a competition to design and analysis of the AE schemes. An

AE scheme has two components: a mode of operation and a primitive. In this

paper JHAE, a novel authenticated encryption mode, is presented based on the

JH (SHA-3 finalist) hash mode. JHAE is an on-line and single-pass dedicated

AE mode based on permutation that supports optional associated data (AD).

It is proved that this mode, based on ideal permutation, achieves privacy and

integrity up to O(2n/2) queries where the length of the used permutation is 2n.

To decrypt, JHAE does not require the inverse of its underlying permutation

and therefore saves area space. JHAE has been used by Artemia, one of the

CAESAR’s first round candidates.

c© 2015 JComSec. All rights reserved.

1 Introduction

An authenticated encryption scheme (AE) can estab-
lish privacy and authentication, simultaneously. The
schemes are important since in many applications,
such as Transport Layer Security (TLS), the two main
goals in information security must be established si-
multaneously [1]. Now, the NIST-funded CAESAR
competition forAE [2] which has been held by Interna-
tional Association for Cryptologic Research (IACR),
has attracted more attention to the AE.

One approach (the first approach) to designing an
AE scheme is the combining two algorithms which
one of them provides confidentiality and the other pro-
vides authenticity. The schemes were named generic

∗ Corresponding author.

Email addresses: jaalizadeh@ihu.ac.ir (J. Alizadeh),

aref@sharif.edu (M. R. Aref), nbagheri@srttu.edu (N.
Bagheri), arahimi@ihu.ac.ir (A. R. Rahimi)

ISSN: 2322-4460 c© 2015 JComSec. All rights reserved.

compositions [1]. In the approach two separate algo-
rithms with two different keys are required. Then this
approach is not efficient. To improve the efficiency
of the AE schemes based on a generic composition,
the AE schemes based on a block cipher mode were
proposed. In the schemes a block cipher is used in a
special mode [3–5]. Although the schemes solved the
problem of requiring two separate algorithms in the
generic composition schemes, but the necessity for a
running the full round block cipher to process each
message block in the modes reduce the efficiency of
the schemes. To solve this problem and enhance the
efficiency of the AE schemes based on a block cipher
mode, dedicated AE schemes were proposed [6–11].

A dedicated AE scheme has two main components:
an special mode of operation and a primitive such
as a random permutation or random function which
is used in the mode. Therefore, in designing a new
dedicated AE one can consider two main stages [12]:
designing a new dedicated mode and designing a new

4 JHAE: A Novel Permutation-Based Authenticated Encryption Mode — J. Alizadeh, M. R. Aref, et al.

random permutation or random function to be used
in the mode.

Extending a hash function mode to a dedicated
AE mode is a general approach to design a new AE
mode. For example, duplex constructions [17], which
were used in designing of the CAESAR candidates
Ascon [18], ICEPOLE [19], KETJE [20], KEYAK [21],
NORX [22], π-Cipher [23], PRIMATEs-GIBBON [24],
PRIMATEs-HANUMAN [24], PRIMATEs-APE [24],
PRØST-APE [25], and STRIBOB [26], are closely
related to the sponge construction [27]. Other exam-
ples include FWPAE and FPAE modes [28] that were
obtained from FWP [29] and FP [13] hash function
modes, respectively. Also, PPAE [30] is a new AE
mode based on Parazoa hash [31] construction. An
important challenge in developing an AE mode from
another mode (e.g. hash mode) is to prove its security,
to ensure that transition the hash mode to another
application does not make any structural flaws. Al-
though obtaining an AE mode from a hash mode is
not complex task, but providing security bounds for
the new mode is not straighted forward.

Hash Modes

A hash function has two main components, a mode of
operation, and a primitive which is iteratively used by
the mode. For example the Merkle-Damg̊ard construc-
tion [32, 33] was used in designing of many famous
hash functions such as SHA-0 [34] and SHA-1 [35].
Some flaws in the construction (e.g. multi-collision
attack [36]) leads to development of new hash con-
structions such as Wide-pipe [37], Sponge [27], JH
[38], Grøstl [15], FP [13], and Parazoa [31]. The last
five ones are permutation-based hash modes. JH and
Grøstl were two finalists of the NIST SHA-3 hash func-
tion competition and Sponge was used by the hash
function Keccak [39] which was the winner of the com-
petition. JH mode is similar to the Sponge mode with
these differences that in the JH mode, the length of
used permutation is the twice of the length of message
blocks and the message blocks are added to the rate
and capacity sections of the mode. So, the efficiency of
JH mode in comparison with the Sponge one, is low.

A comparison of some hash function modes was
presented in [13]. Also, a compression of SHA-3 final-
ists hash modes was presented in [40]. For the modes
Sponge, Grøstl, JH, and FP the comparison was sum-
marized from [13] in Table 1 where ε is a small fraction
due to the preimage attack on JH presented in [41].
Some of the advantages of permutation-based hash
modes were given as follows:

• The modes do not need any key schedule.
• Easy-to-invert permutations are usually efficient

[13].

Contribution

In this paper JH hash function mode [38] is used
to develop a new dedicated AE mode, called JHAE.
The motivation for designing JHAE, is the CAESAR
competition and the main reasons of using JH mode
to design a new AE mode are given as follows:

• It is a permutation-based mode.
• Keccak (which uses the Sponge construction),

Grøstl, and JH are three finalists of the SHA-3
competition. Compared by Grøstl, JH uses only
one permutation and compared by Sponge, it
has better indifferentiability upper bound (See
Table 1).
• Duplex constructions [17], FPAE [28], and re-

cently PPAE [30] are three AE modes based
on the Sponge, FP, and Parazoa hash function
modes, respectively, and so far no AE mode has
been presented based on the JH hash function
mode.

• Extensive researches on the JH hash mode had
done during SHA-3 competition and they have
shown that there was no significant vulnerability
in this hash mode.

JHAE is an on-line and single-pass dedicated AE
mode that supports optional associated data (AD).
Also, its security relies on using nonces. It is proved
in this paper that the mode achieves privacy (indis-
tinguishability under the chosen plaintext attack or
IND-CPA) and integrity (integrity of ciphertext or
INT-CTXT) up to O(2n/2) queries, where the length
of the used permutation is 2n. In addition, it is demon-
strated that the integrity bound of JHAE is reduced
to the indifferentiability of JH hash mode, which is at
least O(2n/2).

JHAE in the CAESAR Competition

Artemia [12, 42] is a family of the dedicated authenti-
cated encryption schemes which was submitted to the
CAESAR competition. It is a sponge-based authenti-
cated encryption scheme that uses the JHAE mode.
Exclude Artemia, all of the sponge-based candidates
of CAESAR use the duplex constructions [43]. Until
now (in the duration of the CAESAR competition) no
flaw has been reported for JHAE and Artemia. Some
of the works in the duration of CAESAR which were
cited JHAE and Artemia are as follows:

• In [44], Jovanovic et. al. showed that sponge
based constructions for authenticated encryp-
tion can achieve a significantly higher bound
than 2c/2, where c is their capacity. (Note that
the capacity of JHAE, is n). They proved that
NORX [22], a CAESAR candidate, achieves this
bound. They also showed how to apply their proof

January 2015, Volume 2, Number 1 (pp. 3–20) 5

Table 1. Comparison of some permutation-based hash modes [13].

Mode Mesg-blk Size of π Rate Indiff. bound # of independent Reference

(l) (a) (l/a) lower upper permutations

Sponge n 2n 0.5 n/2 n/2 1 [14]

Grøstl n 2n 0.5 n/2 n 2 [15]

JH n 2n 0.5 n/2 n(1− ε) 1 [16]

FP n 2n 0.5 n/2 n 1 [13]

to seven other Sponge-based CAESAR submis-
sions: Ascon, CBEAM/STRIBOB, ICEPOLE,
Keyak, PRIMATEs-GIBBON, and PRIMATEs-
HANUMAN. It was mentioned in [44] that the
security proofs may be applicable for the modes
of Artemia (e.g. JHAE) and π-Cipher. JHAE is
slightly different from the seven modes, therefore,
a generalization of the proof of [44] to JHAE is
not entirely straightforward.

• In [45] Agrawal et. al. proposed a new sponge-
basedAE technique for handling long ciphertexts
in memory constrained devices. They considered
all of the nine submissions to the CAESAR which
have the sponge construction in their general-
ized strate. The results of [45] shows that only
two schemes Ascon and PRIMATEs-GIBBON of
the nine sponge-based schemes satisfy the con-
straints in [45] and suitable for limited memory
applications.

• In [46], Hoang et. al. analysed the submissions of
the CAESAR by assuming that the nonce (in the
schemes) can be repeated. With respect to this
assumption, they presented some attacks on the
submissions (e.g. Artemia). Since Artemia is a
nonce respecting scheme then the attack in [46]
does not affect the security of Artemia.

• In [47], Andreeva et al. studied the security of the
keyed sponge-based constructions such as JHAE
and presented the improved indefferntiablity
bound for some of the constructions. Their re-
sults shows that the indefferntiablity bound of
JHAE can be improved.

The performance of JHAE and other sponge-based
AE modes which were submitted to the CAESAR
can be compared with respect to [45]. A comparison
between Artemia and other dedicated AE schemes
which were submitted to the CAESAR competition
was presented in [43]. In addition to, the comparison
between performance of Artemia and other CAESAR
submissions can be found in [48]. With respect to [43],
the comparison of Artrmia and other sponge-based
candidates can be summarized as Table 2. The features
of the schemes were inherited from their mode (e.g.

the features of Artemia were inherited from JHAE).

Organization

The paper is structured as follows: Section 2 gives a
specification of JHAE encryption-authentication and
decryption-verification. Security of JHAE is analyzed
in Section 3. In this section, privacy and integrity of
JHAE, are proved in the ideal permutation model
and by reducing to the security of JH hash mode,
respectively. In Section 4, the rationale behind of the
JHAE design is briefly described. Finally conclusion
is given in Section 5.

2 JHAE Authenticated Encryption
Mode

In this section, JHAE mode, depicted in Figure 1, is
described. JHAE is developed from JH hash function
mode (Figure 2) [38] and iterates a fixed permutation
π : {0, 1}2n → {0, 1}2n. It is a nonce-based, single-
pass, and on-line dedicated AE mode that supports
AD. To decrypt, JHAE does not require the inverse of
its underlying permutation and therefore saved area
space.

2.1 Encryption and Authentication

JHAE accepts an n-bit keyK, an n-bit nonceN , a mes-
sage M , an optional AD, A, and produces ciphertext
C and authentication tag T . Pseudo-code of JHAE’s
encryption-authentication is depicted in Algorithm 1.
It is assumed that the input message, after padding,
is a multiple of the block size (n). The last block of
the original message is concatenated by the padding
data as follows (See Figure 3):

(1) The length of nonce (N) is appended to the end
of the last block of message.

(2) The length of the associated data (A) is ap-
pended to the end of the padded message in 1.

(3) The length of the message (M) is appended to
the end of the padded message in 2.

(4) A bit ‘1’ followed by a sequence of ‘0’ is appended
to the end of the padded message in 3 such that

6 JHAE: A Novel Permutation-Based Authenticated Encryption Mode — J. Alizadeh, M. R. Aref, et al.

Table 2. Comparison between Artemia and other sponge-based candidates of CAESAR [43]. n.n. means unnamed custom primitive.

Sponge-Based Design Primitive Security Parallelizable On-Line Nonce Misuse Inverse-Free Reference

AE Proofs Resistance

Artemia JHAE Artemia X × X × X [42]

Ascon Duplex Ascon X × X X X [18]

ICEPOLE Duplex Keccak-like X X X X X [19]

KETJE Duplex Keccak-f X × X × X [20]

KEYAK Duplex Keccak-f X X X × X [21]

NORX Duplex n.n. X X X × X [22]

π-Cipher Duplex n.n. × X X × X [23]

PRIMATEs-GIBBON Duplex PRIMATE X × X × X [24]

PRIMATEs-HANUMAN Duplex PRIMATE X × X × X [24]

PRIMATEs-APE Duplex PRIMATE X × X X × [24]

PRØST-APE Duplex PRØST × × X X × [25]

STRIBOB Duplex Streebog X × X × X [26]

- - - - -i i i i i? ? ? ? ?- - - - -- -

-
K = x0

IV = 0

- - - - -i i i i i- -- -- - - i-
6 6 6 6 6 6

6 6

π π π π π

x′0 x′1 x′l

x1 xl xl+1 xp

cl+1 = x′l+1 cp = x′p

y′0 y′1 y′l y′l+1

y0 y1 yl yl+1 yp xp+1

mp K

T

ml+1mlm1N

m0 = N m1 ml ml+1 mp

Figure 1. JHAE mode of operation (encryption and authentication), where pad(A) = m1‖m2‖ . . . ‖ml and
pad(M) = ml+1 ‖ ml+2 ‖ ... ‖ mp

- - -i i i? ? ?- - - -

-IV

IV ′

- - -i i i- ---

6 6 6

π π π
hash

mkm2m1

m1 m2 mk

Figure 2. JH hash mode [16]'

&

$

%

Padded Message:

Message
|Nonce|

≤ log(n)

|AD|

(24 bit)

|Message|

(64 bit)
1000 · · · 000

Figure 3. Message padding in JHAE

the padded message is a multiple of the block
size n.

If there is the AD in the procedure, it is padded by
a bit ‘1’ followed by a sequence of ‘0’ such that the
padded AD would be a multiple of the block size n
(See Figure 4). The padded AD is processed in a way

which is similar to the process of the message block
with an exception that ciphertext blocks (ci), are not
produced for the AD blocks.

January 2015, Volume 2, Number 1 (pp. 3–20) 7

'

&

$

%

Padded AD:

AD 10000 · · · 000

Figure 4. AD padding in JHAE

Algorithm 1 Encryption and authentication using
JHAE

1: procedure JHAE − Eπ(K,N,M,A)
2: m1‖m2‖ . . . ‖ml ← pad(A)
3: ml+1 ‖ ml+2 ‖ ... ‖ mp ← pad(M)
4: IV ← 0
5: m0 ← N
6: x′0 ← IV ⊕m0

7: x0 ← K
8: for i← 0, p− 1 do
9: y′i ‖ yi ← π(x′i ‖ xi)

10: x′i+1 ← y′i ⊕mi+1

11: xi+1 ← yi ⊕mi

12: end for
13: y′p ‖ yp ← π(x′p ‖ xp)
14: xp+1 ← yp ⊕mp

15: C ← x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
16: T ← xp+1 ⊕K
17: return (C, T) . C is the ciphertext and T is

the authentication tag
18: end procedure

2.2 Decryption and Verification

JHAE decryption-verification procedure, depicted in
Algorithm 2, accepts an n-bit key K, an n-bit nonce
N , a ciphertext C, a tag T , an optional AD, A, and
decrypts the ciphertext to get message M and tag T ′.
If T ′ = T , then it outputs M ; else, it outputs ⊥.

3 Security Proofs

In this section, security of JHAE is proved. First, game
playing framework proposed by Bellare and Rogaway
[49] is used and an upper bound is obtained for the
advantage of an adversary that can distinguish the
JHAE from a random oracle (IND-CPA) in the ideal
permutation model. Then, it is proved that JHAE
provides integrity (INT-CTXT) until JH hash mode is
indifferentiable from a random oracle or tag can not be
guessed. These proofs are followed in two subsections
of privacy and integrity.

3.1 Privacy

In this section, privacy’s security bound for JHAE
based on ideal permutation π is provided.
Theorem 1. JHAE based on an ideal permutation
π : {0, 1}2n → {0, 1}2n, is (tA, σ, ε)-indistinguishable

Algorithm 2 Decryption and verification using
JHAE

1: procedure JHAE −Dπ(K,N,C, T,A)
2: m1‖m2‖ . . . ‖ml ← pad(A)
3: c1 ‖ c2 ‖ ... ‖ cp ← C
4: IV ← 0
5: m0 ← N
6: x′0 ← IV ⊕m0

7: x0 ← K
8: x′l+1 ‖ x′l+2 ‖ ... ‖ x′l+p ← c1 ‖ c2 ‖ ... ‖ cp
9: for i← 0, l − 1 do

10: y′i ‖ yi ← π(x′i ‖ xi)
11: x′i+1 ← y′i ⊕mi+1

12: xi+1 ← yi ⊕mi

13: end for
14: for i← l, p− 1 do
15: y′i ‖ yi = π(x′i ‖ xi)
16: mi+1 = y′i ⊕ x′i+1

17: xi+1 = yi ⊕mi

18: end for
19: y′p ‖ yp ← π(x′p ‖ xp)
20: xp+1 ← yp ⊕mp

21: M ← ml+1 ‖ ml+2 ‖ ... ‖ mp

22: T ′ ← xp+1 ⊕K
23: if T ′ = T then
24: return M . M is the plaintext
25: else
26: return ⊥
27: end if
28: end procedure

from an ideal AE based on a random function RO and
ideal permutation π′ with the same domain and range,

for any tA; then, ε ≤
σ(σ − 1)

22n−1
+

σ2

22n
+
σ2

2n
, where

σ is the total number of blocks in queries to JHAE
encryption function (denoted by JHAE −E), π, and
π−1, by the adversary A.

Proof. To prove the above theorem, a game playing
framework based on ten games of G0 to G9 is used
where G0 represents JHAE based on ideal permuta-
tion π , JHAE−π, π−1, and G9 represents a random
oracle, RO, an ideal permutation π and its inverse
π−1. To determine the adversary’s advantage on dis-
tinguishing JHAE from an ideal AE scheme, the ad-
versary’s advantage moving from a game to the next
game is calculated.

8 JHAE: A Novel Permutation-Based Authenticated Encryption Mode — J. Alizadeh, M. R. Aref, et al.

Game G0

This game shows the communication of A with
JHAE−π, π−1 (see Algorithm 3). In this game, per-
mutations π and π−1 are exactly the permutations
that are used in the real JHAE mode. Hence:

Pr[AG0 ⇒ 1] = Pr[AJHAE−E ⇒ 1]

Game G1

This game is identical to G0 with an exception that
the ideal permutation (π, π−1) is chosen in a “lazy”
manner, oracles O2 and O3 respectively (see Algo-
rithm 4). These oracles perfectly simulate two ideal
permutations and, since it is assumed that π and π−1

in G0 are ideal permutations, then the distribution
of the returned values in G0 and G1 are identical.
Therefore we have:

Pr[AG1 ⇒ 1] = Pr[AG0 ⇒ 1].

Game G2

To generate G2, a PRP-PRF switch [49] is done in
G1(see Algorithm 5). This means that the ideal per-
mutationsO2 andO3 inG1 are replaced with two ran-
dom functions in G2. Therefore, the only difference
between G2 and G1 is oracles O2 and O3 (two ideal
permutations are stimulated in G1; but, two random
functions are stimulated in G2). Unlike the ideal per-
mutation, it is possible to find a collision in a random
function. Since in G1, there is not collision, in G2,
There may be a collision in O2 or O3 and the adver-
sary can differentiate G2 from G1. Hence, a collision
is defined in G2 as a bad event and denoted by bad0.
The distribution of the returned values by G2 and G1

are identical until bad0 occurs. Suppose that the ad-
versary can do at most σ2 and σ3 query for O2 and
O3, respectively, and let σ′ = σ2 + σ3; Then:

Pr[AG2 ⇒ 1]− Pr[AG1 ⇒ 1] =

Pr[bad0 ← true] = Pr[Collision in O2 or O3 in G2]

≤ σ2(σ2 − 1)

22n+1
+
σ3(σ3 − 1)

22n+1
≤ σ′(σ′ − 1)

22n+1
≤ σ(σ − 1)

22n+1
.

Game G3

InG3, oracleO1 does not pass any query to the oracle
O2; but, it exactly simulates the behavior of oracle
O2(see G3 in Algorithm 6). Thus, the distribution of
the returned values by G3 and G2 are identical from
the adversary’s view:

Pr[AG3 ⇒ 1] = Pr[AG2 ⇒ 1].

Game G4

In G4 (see Algorithm 7) the purpose is to push the
behavior of O1 one step towards the random oracle.
Hence, the queries that are included intoO2 byO1 and
those that are directly queried by the adversary of O2

or O3 are separated. In this game, if an intermediate
query generated by O1, that is expected to be queried
to O2, has a record on the part of O2 not included by
O1, it is considered a bad event and denoted by bad1.
However, the distribution of responses of queries to
O2 and O3 remains identical to G3. Hence, it can be
stated that G3 and G4 are identical until bad1 occurs
inG4. Assuming that the adversary can do at most σ1
query to O1 and σ′ query to O2 or O3, the adversary’s
advantage from G3 to G4 is bounded as follows:

Pr[AG4 ⇒ 1]− Pr[AG3 ⇒ 1] = Pr[bad1 ← true]

≤ σ′(σ1)

22n
≤ σ2

22n
.

Game G5

In G5 (see Algorithm 8), the responses of O2 or O3

are not compatible with those of O1. In G5, the pur-
pose is to push the behaviour of O2 and O3 one step
towards the ideal permutations that are independent
from RO. For this reason, two auxiliary tables are
generated to keep the input and output of the in-
termediate tentative queries to O2 generated by O1

which are denoted byW and Y , respectively. The aim
of this game is to not return any record that has been
included in O2 by O1 when the adversary is directly
queried to O2 or O3. Hence, in this game, if a query
to O2 or O3 has a record in W and Y , respectively, it
is considered a bad event and denoted by bad2. More
precisely, on query to O1, when it generates a local
tentative fresh query wi to O2 and generates yi as a
response, then wi is stored in W and yi is stored in
Y . However, distribution of the responses to queries
to O1 remains identical to G4. Hence, it can be stated
that G4 and G5 are identical until bad2 occurs in G4.
To bound the probability of bad2, suppose that wj is
the j-th block that is queried to O1 and yj is the re-
sponse of O1 to the query where 1 ≤ j ≤ σ1, vi is the
i-th query to O2 where 1 ≤ i ≤ σ2, and zl is the l-th
query to O3 where 1 ≤ l ≤ σ3. Then:

Pr[bad2 ← true] =

σ2∑
i=1

σ1∑
j=1

Pr[vi = wj]

+

σ3∑
l=1

σ1∑
j=1

Pr[zl = yj] 6
σ2σ1
2n

+
σ3σ1
2n

.

It must be noted that, in the above calculations,
the fact that, given the response of a query to O1, the
adversary can determine half of the bits of each wj ∈

January 2015, Volume 2, Number 1 (pp. 3–20) 9

W and yi ∈ Y is considered. Hence, the adversary’s
advantage from G4 to G5 is bounded as follows:

Pr[AG5 ⇒ 1]−Pr[AG4 ⇒ 1] ≤ σ1 × (σ2 + σ3)

2n
6
σ2

2n
.

Game G6

G6 (see Algorithm 9) is identical to G5 with an ex-
ception that O1 does not keep the history of the in-
termediate queries. However, this modification has no
impact on the distribution of the returned values to
the adversary, if there is no bad event in neither of
the games. Hence, in the adversary’s view, for queries
to O1, distributions of the returned values in G5 and
G6 are identical as far as there is not an intermediate
collision in G5. On the other hand, the distribution of
responses to queries to O2 and O3 remains identical
to G5. Hence, the adversary’s advantage from G5 to
G6 is bounded as follows:

Pr[AG6 ⇒ 1]− Pr[AG5 ⇒ 1]

≤ σ1 × (σ1 − 1)

22n
≤ σ × (σ − 1)

22n
.

Game G7

In Game G7 (see Algorithm 10), the blocks of cipher-
text and tag value are generated randomly. However,
it has no impact of the distribution of the returned
values to the adversary. Hence, distributions of the
returned values in G6 and G7 are identical:

Pr[AG7 ⇒ 1] = Pr[AG6 ⇒ 1].

Game G8

In Game G8 (see Algorithm 11), a PRF-PRP switch
[49] is run; i.e. the ideal random functions O2 and
O3 in G7 are replaced with a random permutation
and its inverse in G8. Therefore, the only difference
between G7 and G8 is oracles O2 and O3. Thus, the
distribution of the returned values by G7 and G8 are
identical until O2 or O3 has a collision in G7. Hence,
the adversary’s advantage from G7 to G8 is bounded
as follows:

Pr[AG8 ⇒ 1]− Pr[AG7 ⇒ 1]

= Pr[Collision in O2 or O3 in G7]

≤ σ2(σ2 − 1)

22n+1
+
σ3(σ3 − 1)

22n+1
≤ σ′(σ′ − 1)

22n+1
≤ σ(σ − 1)

22n+1
.

Game G9

InG8 for each message/AD block, an appropriate (re-
garding the length) random value is selected as ci-
pher text and similarly a random value is selected as
the tag value. Next, these random values are concate-

nated and returned to the adversary. However, in G9

(see Algorithm 12) on query to O1, a random string
of the length of the desired cipher and tag is selected
and returned to the adversary. However, this modifi-
cation from G8 to G9 has no impact on the distribu-
tion of the returned values to the adversary. Hence:

Pr[AG9 ⇒ 1] = Pr[AG8 ⇒ 1].

On the other hand,G8 perfectly simulatesRO, π, π−1.
Then:

Pr[ARO,π,π
−1

⇒ 1] = Pr[AG9 ⇒ 1].

Finally, using the fundamental lemma of game
playing [49], the following can be stated:

AdvPrivacyJHAE (A)

= Pr[AJHAE−E,π,π
−1

⇒ 1]− Pr[ARO,π,π
−1

⇒ 1]

= Pr[AG0 ⇒ 1]− Pr[AG9 ⇒ 1]

= (Pr[AG0 ⇒ 1]− Pr[AG1 ⇒ 1])

+(Pr[AG1 ⇒ 1]− Pr[AG2 ⇒ 1])

+(Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1])

+(Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1])

+(Pr[AG4 ⇒ 1]− Pr[AG5 ⇒ 1])

+(Pr[AG5 ⇒ 1]− Pr[AG6 ⇒ 1])

+(Pr[AG6 ⇒ 1]− Pr[AG7 ⇒ 1])

+(Pr[AG7 ⇒ 1]− Pr[AG8 ⇒ 1])

+(Pr[AG8 ⇒ 1]− Pr[AG9 ⇒ 1])

≤ 0 +
σ(σ − 1)

22n+1
+ 0 +

σ2

22n
+
σ2

2n
+
σ(σ − 1)

22n
+ 0

+
σ(σ − 1)

22n+1
+ 0 ≤ σ(σ − 1)

22n−1
+

σ2

22n
+
σ2

2n
.

3.2 Integrity

In this section, integrity of ciphertext (INT-CTXT) of
JHAE is proved. The INT-CTXT security bound of a
permutation based AE scheme is defined as the maxi-
mum advantage of any adversary to produce a valid
triple (N,A‖C, T) (e.g. a forgery for the AE scheme)
without directly querying to the scheme. To forge an
AE scheme, the adversary can query to AE − E (en-
cryption and authentication), AE − D (decryption
and verification), and π or π−1. Thus, two phases can
be considered for any forgery attempt as follows:

(1) Data gathering: The adversary gathers some
valid triples such as S = (Ni, (A‖C)i, Ti) where
1 ≤ i ≤ q by at most q queries to AE −E, π or
π−1.

10 JHAE: A Novel Permutation-Based Authenticated Encryption Mode — J. Alizadeh, M. R. Aref, et al.

(2) Execution: The adversary produces a new
triple (N,A‖C, T) such that (N,A‖C, T) /∈ S is
accepted by AE −D as a valid triple.

In this section, it is shown that the advantage of any
adversary that makes a reasonable number of queries
to JHAE −E, π, and π−1 is negligible in the forgery
attack against JHAE.
Theorem 2. For any adversary A that makes total σ
block queries to JHAE − E, π, or π−1, JHAE based
on an ideal permutation π : {0, 1}2n → {0, 1}2n, is

(tA, σ, ε)-unforgeable, for any tA, where ε ≤
σ2

2n
+

q

2n
.

Proof. Suppose that A is an adversary that tries to
forge JHAE. A should query at the first to JHAE, q
times, and produce a list S = {(Ni, (A‖C)i, Ti); 1 ≤
i ≤ q}. Next,A produces a new (N,A‖C, T) /∈ S such
that JHAE −D(N,A‖C, T) 6=⊥ as its forged triple.
All of the possible cases for the new valid (N,A‖C, T)
are as follows (cases 001 to 111).

(1) Case 001. Adversary generates a valid
(N,A‖C, T) /∈ S such that ∃(Ni, (A‖C)i, Ti) ∈
S : N = Ni, A‖C = (A‖C)i, T 6= Ti, for
0 ≤ i ≤ q.

(2) Case 010. Adversary generates a valid
(N,A‖C, T) /∈ S such that ∃(Ni, (A‖C)i, Ti) ∈
S : N = Ni, A‖C 6= (A‖C)i, T = Ti, for
0 ≤ i ≤ q.

(3) Case 011. Adversary generates a valid
(N,A‖C, T) /∈ S such that ∀(Ni, (A‖C)i, Ti) ∈
S : A‖C 6= (A‖C)i, T 6= Ti, for 0 ≤ i ≤ q
and ∃(Ni, (A‖C)i, Ti) ∈ S : N = Ni, A‖C 6=
(A‖C)i, T 6= Ti.

(4) Case 100. Adversary generates a valid
(N,A‖C, T) /∈ S such that ∃(Ni, (A‖C)i, Ti) ∈
S : N 6= Ni, A‖C = (A‖C)i, T = Ti, for
0 ≤ i ≤ q.

(5) Case 101. Adversary generates a valid
(N,A‖C, T) /∈ S such that ∃(Ni, (A‖C)i, Ti) ∈
S : N 6= Ni, A‖C = (A‖C)i, T 6= Ti, for
0 ≤ i ≤ q.

(6) Case 110. Adversary generates a valid
(N,A‖C, T) /∈ S such that ∃(Ni, (A‖C)i, Ti) ∈
S : N 6= Ni, A‖C 6= (A‖C)i, T = Ti, for
0 ≤ i ≤ q.

(7) Case 111. Adversary generates a valid
(N,A‖C, T) /∈ S such that ∀(Ni, (A‖C)i, Ti) ∈
S : N 6= Ni, A‖C 6= (A‖C)i, T 6= Ti, for
0 ≤ i ≤ q.

Hence, the adversary’s advantage can be upper
bound to forge JHAE as follows:

Pr[AINTJHAE ⇒ 1] = Pr[Case 001] + Pr[Case 010]

+Pr[Case 011] + Pr[Case 100] + Pr[Case 101]

+Pr[Case 110] + Pr[Case 111].

(1)

To determine an upper bound for this advantage,
the mentioned cases are categorized as three distinct
sets as follows and the adversary’s advantage in pro-
ducing a successful forgery for each set is determined.

Set 1

Set 1 includes any case that could not be used to
successfully forge JHAE. More precisely, any triple
that matches case 001 can not be used to forge JHAE.
The reason comes from the fact that, for JHAE for
a valid triple, if A‖C = (A‖C)i and N = Ni then
T = Ti. Therefore:

Pr[Case 001] = 0.

Set 2

Set 2 includes any case that can be directly used to
differentiate JH hash mode from a random oracle. To
determine these cases, JH hash mode in Figure 2 is
considered. Since T = Ti (for 1 ≤ i ≤ q) implies
(xp+1)i = (xp+1), and (xp+1)i and (xp+1) are hash
outputs in JH hash mode, then cases 010, 100, and 110
in the forgery attempt of JHAE lead to collisions in
JH hash mode. In other words, if cases 010, 100, and
110 occur in the forgery attempt of JHAE, a collision
can be found in the JH hash mode and therefore the
mode can be dierentiated from a random oracle. Since
the bound of the indifferentiability of JH has been

proved to be
σ2

2n
[16], then:

Pr[Case 010] +Pr[Case 100] +Pr[Case 110] ≤ σ2

2n
.

Set 3

This set includes cases that force the adversary to
guess the tag. More precisely, in cases 011, 101, and
111, the adversary finds a new valid (N,A‖C, T) such
that ∀(Ni, (A‖C)i, Ti) ∈ S : N 6= Ni or A‖C 6=
(A‖C)i. On the other hand, given such a pair ofN and
A‖C, distribution of the valid tag would be uniformly
distributed over {0, 1}n. Hence, at each attempt, the
adversary’s advantage in generating a valid tag would
be 2−n. So:

Pr[Case 101] + Pr[Case 011] + Pr[Case 111] ≤ q

2n

Finally, using Equation (1):

January 2015, Volume 2, Number 1 (pp. 3–20) 11

Pr[AINTJHAE ⇒ 1] ≤ σ2

2n
+

q

2n

Comparing the security of JHAE and JH

In [41], Bhattacharyya et al. showed that in the ideal
permutation model, JH is indifferentiable from a ran-
dom oracle. They used the approach of Chang and
Nandi in [50]. Andreeva et al. in [40] showed that the
bounds for JH is not accurate when the security of
preimage and second preimage are considered. For
this, they considered the JH feathers an used a di-
rect approach. Finally, Moody et al. in [16] improved
the indifferentiability bound for JH. They used three
games in the game playing framework. The results of
[16] were summarized in Table 1.

In this paper, the game playing framework was
used to find an indefferntiability bound for JHAE. The
bound is 2n/2 and similar to the bound of JH in [16].
This is the first nontrivial security bound for JHAE
and can be improved using the technique in [44].

4 Design Rationale

In this section, design rationale of JHAE, is described
briefly.

Structure

The structure of JHAE is based on the JH hash func-
tion mode. The rational of using JH mode was men-
tioned in Section 1.

Padding

In the padding rule of JHAE, the length of nonce, AD,
and message were used. The main rational of the rule is
domain separation between nonce, AD, and message.

Final Key Addition

With respect to Figure 1, the final tag was computed as
xp+1⊕K. Since JHAE didn’t use explicit finalization,
this key addition is required to prevent the length
extension attacks.

5 Conclusion

In this paper, JHAE, a new dedicated permutation-
based AE mode, was introduced. JHAE is an on-line
and single-pass dedicated AE mode which did not
require the inverse of its underlying permutation to
decrypt and therefore saved area space. JHAE was
used by Artemia, one of the CAESAR candidates.

In the ideal permutation model, it was proved that
JHAE provided IND-CPA and INT-CTXT up to q =

O(2n/2). On the other hand, the best-known attack on
JHAE has a complexity up to q = O(2n). Therefore,
in particular there remains a gap between the best-
known attack and the security bound of JHAE.

For a future work, the security bound of JHAE
can be improved using the security model introduced
in [44].

Acknowledgment

This work was partially supported by Iran-NSF under
grant no. 92.32575.

Appendix A Sequence of Games

Algorithm 3 GameG0 perfectly simulates (JHAE−
π, π−1)

1: procedure Initialization
2: K ← {0, 1}n
3: IV ← 0
4: m0 ← N
5: x′0 ← IV ⊕m0

6: x0 ← K
7: end procedure
8: procedure O1 -query(N,A,M)
9: m1 ‖ m2 ‖ ... ‖ mp ← pad(A)‖pad(M)

10: for i← 0, p− 1 do
11: y′i ‖ yi ← O2(x′i ‖ xi)
12: x′i+1 ← y′i ⊕mi+1

13: xi+1 ← yi ⊕mi

14: end for
15: y′p ‖ yp ← O2(x′p ‖ xp)
16: xp+1 ← yp ⊕mp

17: C ← x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
18: T ← xp+1 ⊕K
19: return (C, T)
20: end procedure
21: procedure O2-query(m)
22: v ← π(m)
23: return v
24: end procedure
25: procedure O3-query(v)
26: m← π−1(v)
27: return m
28: end procedure

12 JHAE: A Novel Permutation-Based Authenticated Encryption Mode — J. Alizadeh, M. R. Aref, et al.

Algorithm 4 In game G1 the permutations π and
π−1 are simulated .

1: procedure Initialization
2: K ← {0, 1}n
3: IV ← 0
4: m0 ← N
5: x′0 ← IV ⊕m0

6: x0 ← K
7: end procedure
8: procedure O1 -query(N,A,M)
9: m1 ‖ m2 ‖ ... ‖ mp ← pad(A)‖pad(M)

10: for i← 0, p− 1 do
11: y′i ‖ yi ← O2(x′i ‖ xi)
12: x′i+1 ← y′i ⊕mi+1

13: xi+1 ← yi ⊕mi

14: end for
15: y′p ‖ yp ← O2(x′p ‖ xp)
16: xp+1 ← yp ⊕mp

17: C ← x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
18: T ← xp+1 ⊕K
19: return (C, T)
20: end procedure
21: procedure O2-query(m)
22: if (m, v) ∈ X then
23: return v
24: else
25: v ← {0, 1}2n
26: end if
27: if ∃(m′, v′) ∈ X S.T v′ = v then
28: v ← {0, 1}2n\{v′ : (m′, v′) ∈ X}
29: X = X ∪ (m, v)
30: end if
31: return v
32: end procedure
33: procedure O3-query(v)
34: if (m, v) ∈ X then
35: return m
36: else
37: m← {0, 1}2n
38: end if
39: if ∃(m′, v′) ∈ X S.T m′ = m then
40: m← {0, 1}2n\{m′ : (m′, v′) ∈ X}
41: X = X ∪ (m, v)
42: end if
43: return m
44: end procedure

Algorithm 5 In game G2 the bad event type-0 may
occur.

1: procedure Initialization
2: X = ∅
3: K ← {0, 1}n
4: IV ← 0
5: m0 ← N
6: x′0 ← IV ⊕m0

7: x0 ← K
8: end procedure
9: procedure O1 -query(N,A,M)

10: m1 ‖ m2 ‖ ... ‖ mp ← pad(A)‖pad(M)
11: for i← 0, p− 1 do
12: y′i ‖ yi ← O2(x′i ‖ xi)
13: x′i+1 ← y′i ⊕mi+1

14: xi+1 ← yi ⊕mi

15: end for
16: y′p ‖ yp ← O2(x′p ‖ xp)
17: xp+1 ← yp ⊕mp

18: C ← x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
19: T ← xp+1 ⊕K
20: return (C, T)
21: end procedure
22: procedure O2-query(m)
23: if (m, v) ∈ X then
24: return v
25: else
26: v ← {0, 1}2n
27: end if
28: if ∃(m′, v′) ∈ X S.T v′ = v then
29: bad0 ← true
30: X = X ∪ (m, v)
31: end if
32: return v
33: end procedure
34: procedure O3-query(v)
35: if (m, v) ∈ X then
36: return m
37: else
38: m← {0, 1}2n
39: end if
40: if ∃(m′, v′) ∈ X S.T m′ = m then
41: bad0 ← true
42: X = X ∪ (m, v)
43: end if
44: return m
45: end procedure

January 2015, Volume 2, Number 1 (pp. 3–20) 13

Algorithm 6 In game G3 oracle O2 is simulated inside oracle O1.

1: procedure Initialization
2: X = ∅
3: K ← {0, 1}n
4: IV ← 0
5: m0 ← N
6: x′0 ← IV ⊕m0

7: x0 ← K
8: end procedure
9: procedure O1 -query(N,A,M)

10: m1 ‖ m2 ‖ ... ‖ mp ← pad(A)‖pad(M)
11: for i← 0, p− 1 do
12: if (x′i ‖ xi, y′i ‖ yi) ∈ X then
13: return y′i ‖ yi
14: else
15: y′i ‖ yi ← {0, 1}2n
16: end if
17: if ∃((x′i ‖ xi)′, (y′i ‖ yi)′) ∈ X S.T (y′i ‖

yi)
′ = y′i ‖ yi then

18: bad0 ← true
19: end if
20: X ← X ∪ (x′i ‖ xi, y′i ‖ yi)
21: x′i+1 ← y′i ⊕mi+1

22: xi+1 ← yi ⊕mi

23: end for
24: if (x′p ‖ xp, y′p ‖ yp) ∈ X then
25: return y′p ‖ yp
26: else
27: y′p ‖ yp ← {0, 1}2n
28: end if
29: if ∃((x′p ‖ xp)′, (y′p ‖ yp)′) ∈ X S.T (y′p ‖

yp)
′ = y′p ‖ yp then

30: bad0 ← true

31: end if
32: X ← X ∪ (x′p ‖ xp, y′p ‖ yp)
33: xp+1 ← yp ⊕mp

34: C ← x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
35: T ← xp+1 ⊕K
36: return (C, T)
37: end procedure
38: procedure O2-query(m)
39: if (m, v) ∈ X then
40: return v
41: else
42: v ← {0, 1}2n
43: end if
44: if ∃(m′, v′) ∈ X S.T v′ = v then
45: bad0 ← true
46: X = X ∪ (m, v)
47: end if
48: return v
49: end procedure
50: procedure O3-query(v)
51: if (m, v) ∈ X then
52: return m
53: else
54: m← {0, 1}2n
55: end if
56: if ∃(m′, v′) ∈ X S.T m′ = m then
57: bad0 ← true
58: X = X ∪ (m, v)
59: end if
60: return m
61: end procedure

14 JHAE: A Novel Permutation-Based Authenticated Encryption Mode — J. Alizadeh, M. R. Aref, et al.

Algorithm 7 In game G4 bad event type-1 may occur.

1: procedure Initialization
2: XO1

← ∅
3: XO2

← ∅
4: X ← XO1

‖ XO2

5: K ← {0, 1}n
6: IV ← 0
7: m0 ← N
8: x′0 ← IV ⊕m0

9: x0 ← K
10: end procedure
11: procedure O1 -query(N,A,M)
12: m1 ‖ m2 ‖ ... ‖ mp ← pad(A)‖pad(M)
13: for i← 0, p− 1 do
14: if (x′i ‖ xi, y′i ‖ yi) ∈ XO1

then
15: return y′i ‖ yi
16: else if (x′i ‖ xi, y′i ‖ yi) ∈ XO2 then
17: bad1 ← true
18: else
19: y′i ‖ yi ← {0, 1}2n
20: end if
21: if ∃((x′i ‖ xi)′, (y′i ‖ yi)′) ∈ X S.T (y′i ‖

yi)
′ = y′i ‖ yi then

22: bad0 ← true
23: end if
24: XO1

← XO1
∪ (x′i ‖ xi, y′i ‖ yi)

25: x′i+1 ← y′i ⊕mi+1

26: xi+1 ← yi ⊕mi

27: end for
28: if (x′p ‖ xp, y′p ‖ yp) ∈ XO1

then
29: return y′p ‖ yp
30: else if (x′p ‖ xp, y′p ‖ yp) ∈ XO2

then
31: bad1 ← true
32: else
33: y′p ‖ yp ← {0, 1}2n
34: end if

35: if ∃((x′p ‖ xp)′, (y′p ‖ yp)′) ∈ X S.T (y′p ‖
yp)
′ = y′p ‖ yp then

36: bad0 ← true
37: end if
38: XO1

← XO1
∪ (x′p ‖ xp, y′p ‖ yp)

39: xp+1 ← yp ⊕mp

40: C ← x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
41: T ← xp+1 ⊕K
42: return (C, T)
43: end procedure
44: procedure O2-query(m)
45: if (m, v) ∈ X then
46: return v
47: else
48: v ← {0, 1}2n
49: end if
50: if ∃(m′, v′) ∈ X S.T v′ = v then
51: bad0 ← true
52: X = X ∪ (m, v)
53: end if
54: return v
55: end procedure
56: procedure O3-query(v)
57: if (m, v) ∈ X then
58: return m
59: else
60: m← {0, 1}2n
61: end if
62: if ∃(m′, v′) ∈ X S.T m′ = m then
63: bad0 ← true
64: X = X ∪ (m, v)
65: end if
66: return m
67: end procedure

January 2015, Volume 2, Number 1 (pp. 3–20) 15

Algorithm 8 In G5 , bad event type-2 may occur.

1: procedure Initialization
2: XO1

← ∅
3: XO2

← ∅
4: WO1

← ∅
5: WO2 ← ∅
6: YO1 ← ∅
7: YO2

← ∅
8: X ← XO1

‖ XO2

9: W ←WO1
‖WO2

10: Y ← YO1
‖ YO2

11: K ← {0, 1}n
12: IV ← 0
13: m0 ← N
14: x′0 ← IV ⊕m0

15: x0 ← K
16: end procedure
17: procedure O1 -query(N,A,M)
18: m1 ‖ m2 ‖ ... ‖ mp ← pad(A)‖pad(M)
19: for i← 0, p− 1 do
20: if (x′i ‖ xi, y′i ‖ yi) ∈ XO1

then
21: return y′i ‖ yi
22: else if (x′i ‖ xi, y′i ‖ yi) ∈ XO2 then
23: bad1 ← true
24: else
25: y′i ‖ yi ← {0, 1}2n
26: end if
27: if ∃((x′i ‖ xi)′, (y′i ‖ yi)′) ∈ X S.T (y′i ‖

yi)
′ = y′i ‖ yi then

28: bad0 ← true
29: end if
30: XO1

← XO1
∪ (x′i ‖ xi, y′i ‖ yi)

31: WO1 ←WO1 ∪ (x′i ‖ xi)
32: YO1 ← YO1 ∪ (y′i ‖ yi)
33: x′i+1 ← y′i ⊕mi+1

34: xi+1 ← yi ⊕mi

35: end for
36: if (x′p ‖ xp, y′p ‖ yp) ∈ XO1

then
37: return y′p ‖ yp
38: else if (x′p ‖ xp, y′p ‖ yp) ∈ XO2 then
39: bad1 ← true
40: else
41: y′p ‖ yp ← {0, 1}2n

42: end if
43: if ∃((x′p ‖ xp)′, (y′p ‖ yp)′) ∈ X S.T (y′p ‖

yp)
′ = y′p ‖ yp then

44: bad0 ← true
45: end if
46: XO1

← XO1
∪ (x′p ‖ xp, y′p ‖ yp)

47: WO1 ←WO1 ∪ (x′p ‖ xp)
48: YO1 ← YO1 ∪ (y′p ‖ yp)
49: xp+1 ← yp ⊕mp

50: C ← x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
51: T ← xp+1 ⊕K
52: return (C, T)
53: end procedure
54: procedure O2-query(m)
55: if (m, v) ∈ XO2

then
56: return v
57: else if m ∈WO1

then
58: bad2 ← true
59: else
60: v ← {0, 1}2n
61: end if
62: if ∃(m′, v′) ∈ X S.T v′ = v then
63: bad1 ← true
64: XO2 ← XO2 ∪ (m, v)
65: end if
66: return v
67: end procedure
68: procedure O3-query(v)
69: if (m, v) ∈ XO2

then
70: return m
71: else if v ∈ YO1 then
72: bad2 ← true
73: else
74: m← {0, 1}2n
75: end if
76: if ∃(m′, v′) ∈ XO2 S.T m′ = m then
77: bad1 ← true
78: XO2

← XO2
∪ (m, v)

79: end if
80: return m
81: end procedure

16 JHAE: A Novel Permutation-Based Authenticated Encryption Mode — J. Alizadeh, M. R. Aref, et al.

Algorithm 9 In game G6 O1 does not keeps the his-
tory of intermediate queries.

1: procedure Initialization
2: X ← ∅
3: K ← {0, 1}n
4: IV ← 0
5: m0 ← N
6: x′0 ← IV ⊕m0

7: x0 ← K
8: end procedure
9: procedure O1 -query(N,A,M)

10: m1 ‖ m2 ‖ ... ‖ mp ← pad(A)‖pad(M)
11: for i← 0, p− 1 do
12: y′i ‖ yi ← {0, 1}2n
13: x′i+1 ← y′i ⊕mi+1

14: xi+1 ← yi ⊕mi

15: end for
16: y′p ‖ yp ← {0, 1}2n
17: xp+1 ← yp ⊕mp

18: C ← x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
19: T ← xp+1 ⊕K
20: return (C, T)
21: end procedure
22: procedure O2-query(m)
23: if (m, v) ∈ X then
24: return v
25: else
26: v ← {0, 1}2n
27: end if
28: X = X ∪ (m, v)
29: return v
30: end procedure
31: procedure O3-query(v)
32: if (m, v) ∈ X then
33: return m
34: else
35: m← {0, 1}2n
36: end if
37: X = X ∪ (m, v)
38: return m
39: end procedure

Algorithm 10 In game G7 , blocks of ciphertext and
tag value are generated randomly.

1: procedure Initialization
2: X ← ∅
3: end procedure
4: procedure O1 -query(N,A,M)
5: m1 ‖ m2 ‖ ... ‖ mp ← pad(A)‖pad(M)
6: for i← 0, p− 1 do
7: x′i ← {0, 1}n
8: end for
9: C ← x′l+1 ‖ x′l+2 ‖ ... ‖ x′p

10: T ← {0, 1}n
11: return (C, T)
12: end procedure
13: procedure O2-query(m)
14: if (m, v) ∈ X then
15: return v
16: else
17: v ← {0, 1}2n
18: end if
19: X = X ∪ (m, v)
20: return v
21: end procedure
22: procedure O3-query(v)
23: if (m, v) ∈ X then
24: return m
25: else
26: m← {0, 1}2n
27: end if
28: X = X ∪ (m, v)
29: return m
30: end procedure

January 2015, Volume 2, Number 1 (pp. 3–20) 17

Algorithm 11 In game G8 there is a switch from
random function to random permutation .

1: procedure Initialization
2: X ← ∅
3: end procedure
4: procedure O1 -query(N,A,M)
5: m1 ‖ m2 ‖ ... ‖ mp ← pad(A)‖pad(M)
6: for i← 0, p− 1 do
7: x′i ← {0, 1}n
8: end for
9: C ← x′l+1 ‖ x′l+2 ‖ ... ‖ x′p

10: T ← {0, 1}n
11: return (C, T)
12: end procedure
13: procedure O2-query(m)
14: if (m, v) ∈ X then
15: return v
16: else
17: v ← {0, 1}2n
18: end if
19: if ∃(m′, v′) ∈ X S.T v′ = v then
20: v ← {0, 1}2n\{v′ : (m′, v′) ∈ X}
21: end if
22: X = X ∪ (m, v)
23: return v
24: end procedure
25: procedure O3-query(v)
26: if (m, v) ∈ X then
27: return m
28: else
29: m← {0, 1}2n
30: end if
31: if ∃(m′, v′) ∈ X S.T m′ = m then
32: m← {0, 1}2n\{m′ : (m′, v′) ∈ X}
33: end if
34: X = X ∪ (m, v)
35: return m
36: end procedure

Algorithm 12 Game G9 perfectly simulates an ideal
AE, i.e, RO, π and π−1.

1: procedure Initialization
2: X ← ∅
3: end procedure
4: procedure O1 -query(N,A,M)
5: m1 ‖ m2 ‖ ... ‖ mp ← pad(A)‖pad(M)
6: C ← {0, 1}|Pad(M)|

7: T ← {0, 1}n
8: return (C, T)
9: end procedure

10: procedure O2-query(m)
11: if (m, v) ∈ X then
12: return v
13: else
14: v ← {0, 1}2n
15: end if
16: if ∃(m′, v′) ∈ X S.T v′ = v then
17: v ← {0, 1}2n\{v′ : (m′, v′) ∈ X}
18: end if
19: X = X ∪ (m, v)
20: return v
21: end procedure
22: procedure O3-query(v)
23: if (m, v) ∈ X then
24: return m
25: else
26: m← {0, 1}2n
27: end if
28: if ∃(m′, v′) ∈ X S.T m′ = m then
29: m← {0, 1}2n\{m′ : (m′, v′) ∈ X}
30: end if
31: X = X ∪ (m, v)
32: return m
33: end procedure

18 JHAE: A Novel Permutation-Based Authenticated Encryption Mode — J. Alizadeh, M. R. Aref, et al.

References

[1] Mihir Bellare and Chanathip Namprempre. Au-
thenticated Encryption: Relations among No-
tions and Analysis of the Generic Composition
Paradigm. J. Cryptology, 21(4):469–491, 2008.

[2] CAESAR. CAESAR: Competition for Authenti-
cated Encryption: Security, Applicability,and Ro-
bustness, 2013. http://competitions.cr.yp.

to/caesar.html.
[3] Phillip Rogaway, Mihir Bellare, and John Black.

OCB: A Block-Cipher Mode of Operation for
Efficient Authenticated Encryption. ACM Trans.
Inf. Syst. Secur., 6(3):365–403, 2003.

[4] David A. McGrew and John Viega. The Security
and Performance of the Galois/Counter Mode
(GCM) of Operation. In INDOCRYPT, volume
3348 of Lecture Notes in Computer Science, pages
343–355. Springer, 2004.

[5] Doug Whiting, Niels Ferguson, and Russell Hous-
ley. Counter with CBC-MAC (CCM). Request
for Comments (RFC), (3610), 2003.

[6] Goce Jakimoski and Samant Khajuria. ASC-1:
An Authenticated Encryption Stream Cipher. In
Selected Areas in Cryptography, volume 7118 of
Lecture Notes in Computer Science, pages 356–
372. Springer, 2012.

[7] Andrey Bogdanov, Florian Mendel, Francesco
Regazzoni, Vincent Rijmen, and Elmar Tis-
chhauser. ALE: AES-based lightweight authen-
ticated encryption. Preproceedings of Fast Soft-
ware Encryption (FSE 2013), 2013. To Appear.

[8] Hongjun Wu and Bart Preneel. AEGIS: A Fast
Authenticated Encryption Algorithm. In Se-
lected Areas in Cryptography, volume 8282 of Lec-
ture Notes in Computer Science, pages 185–201.
Springer, 2013.

[9] Begül Bilgin, Andrey Bogdanov, Miroslav Kneze-
vic, Florian Mendel, and Qingju Wang. FIDES:
Lightweight Authenticated Cipher with Side-
Channel Resistance for Constrained Hardware.
In CHES, volume 8086 of Lecture Notes in Com-
puter Science, pages 142–158. Springer, 2013.

[10] Markku Juhani O Saarinen. CBEAM: Efficient
Authenticated Encryption from Feebly One-Way
φ Functions. In CT-RSA, volume 8366 of Lec-
ture Notes in Computer Science, pages 251–269.
Springer, 2014.

[11] Elena Andreeva, Begül Bilgin, Andrey Bogdanov,
Atul Luykx, Bart Mennink, Nicky Mouha, and
Kan Yasuda. APE: Authenticated Permutation-
Based Encryption for Lightweight Cryptography.
Preproceedings of Fast Software Encryption (FSE
2014), 2014. To Appear.

[12] Javad Alizadeh, Mohammad Reza Aref, and Na-
sour Bagheri. Artemia: A Family of Provably

Secure Authenticated Encryption Schemes. The
ISC Int’l Journal of Information Security (ISe-
cure), 6(2):125–139, 2014.

[13] Souradyuti Paul, Ekawat Homsirikamol, and Kris
Gaj. A Novel Permutation-based Hash Mode of
Operation FP and The Hash Function SAMOSA.
In Progress in Cryptology-INDOCRYPT 2012,
pages 509–527. Springer, 2012.

[14] Guido Bertoni, Joan Daemen, Michaël Peeters,
and Gilles Van Assche. On the indifferentiabil-
ity of the sponge construction. In Advances in
Cryptology–EUROCRYPT 2008, pages 181–197.
Springer, 2008.

[15] Praveen Gauravaram, Lars R Knudsen, Krystian
Matusiewicz, Florian Mendel, Christian Rech-
berger, Martin Schläffer, and Søren S Thomsen.
Grøstl–a SHA-3 candidate. Submission to NIST,
2008.

[16] Dustin Moody, Souradyuti Paul, and Daniel
Smith-Tone. Improved Indifferentiability Secu-
rity Bound for the JH Mode. In 3rd SHA-3 Can-
didate Conference, 2012.

[17] Guido Bertoni, Joan Daemen, Michael Peeters,
and Gilles Van Assche. Duplexing the Sponge:
Single-Pass Authenticated Encryption and Other
Applications. In Selected Areas in Cryptography
SAC, volume 7118 of Lecture Notes in Computer
Science, pages 320–337. Springer, 2011.

[18] Christoph Dobraunig, Maria Eichlseder, Flo-
rian Mendel, and Martin Schlffer. As-
con v1. CEASAR Cryptographic Competi-
tions, 2014. http://competitions.cr.yp.to/

caesar-submissions.html.
[19] Pawe Morawiecki, Kris Gaj, Ekawat Hom-

sirikamol, Krystian Matusiewicz, Josef Pieprzyk,
Marcin Rogawski, Marian Srebrny, and Marcin
Wjcik. ICEPOLE v1. CEASAR Cryptographic
Competitions, 2014. http://competitions.cr.
yp.to/caesar-submissions.html.

[20] PGuido Bertoni, Joan Daemen, Michal Peeters,
and Ronny Van Keer Gilles Van Assche.
KETJE v1. CEASAR Cryptographic Competi-
tions, 2014. http://competitions.cr.yp.to/

caesar-submissions.html.
[21] Michal Peeters Guido Bertoni, Joan Daemen,

Gilles Van Assche, , and Ronny Van Keer.
KEYAK v1. CEASAR Cryptographic Competi-
tions, 2014. http://competitions.cr.yp.to/

caesar-submissions.html.
[22] Jean Philippe Aumasson, Philipp Jo-

vanovic, and Samuel Neves. NORX v1.
CEASAR Cryptographic Competitions,
2014. http://competitions.cr.yp.to/

caesar-submissions.html.
[23] Danilo Gligoroski, Hristina Mihajloska, Si-

mona Samardjiska, Hkon Jacobsen, Mohamed

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html

January 2015, Volume 2, Number 1 (pp. 3–20) 19

El-Hadedy, and Rune Erlend Jensen. π-
Cipher v1. CEASAR Cryptographic Competi-
tions, 2014. http://competitions.cr.yp.to/

caesar-submissions.html.
[24] Elena Andreeva, Begl Bilgin, Andrey Bogdanov,

Atul Luykx, Florian Mendel, Bart Mennink,
Nicky Mouha, Qingju Wang, and Kan Yasuda.
PRIMATEs v1. CEASAR Cryptographic Com-
petitions, 2014. http://competitions.cr.yp.

to/caesar-submissions.html.
[25] Elif Bilge Kavun, Martin M. Lauridsen,

Gregor Leander, Christian Rechberger, Pe-
ter Schwabe, and Tolga Yal. PRØST v1.
CEASAR Cryptographic Competitions,
2014. http://competitions.cr.yp.to/

caesar-submissions.html.
[26] Markku Juhani O. Saarinen. STRIBOB

v1. CEASAR Cryptographic Competitions,
2014. http://competitions.cr.yp.to/

caesar-submissions.html.
[27] Guido Bertoni, Joan Daemen, Michaël Peeters,

and Gilles Van Assche. Sponge Functions.
ECRYPT hash workshop, 2007.

[28] R Sumesh Manjunath. Provably secure authen-
ticated encryption modes. Masters Thesis, In-
draprastha Institute of Information Technology,
Delhi, 2013.

[29] Mridul Nandi and Souradyuti Paul. Speeding
up the wide-pipe: Secure and fast hashing. In
Progress in Cryptology-INDOCRYPT 2010, pages
144–162. Springer, 2010.

[30] Donghoon Chang, Sumesh Manjunath R, and
Somitra Kumar Sanadhya. PPAE: Practical
Parazoa Authenticated Encryption Family. In
ProvSec, pages 198–211. Springer, 2015.

[31] Andreeva Elena, Bart Mennink, and Bart Preneel.
The parazoa family: generalizing the sponge hash
functions. International Journal of Information
Security, 11(3):149–165, 2012.

[32] Ralph C Merkle. One way hash functions and
DES. In Advances in CryptologyCRYPTO89
Proceedings, pages 428–446. Springer, 1990.

[33] Ivan Bjerre Damg̊ard. A design principle for hash
functions. In Advances in CryptologyCRYPTO89
Proceedings, pages 416–427. Springer, 1990.

[34] NIST. Secure Hash Standard. In Federal Infor-
mation Processing Standard, FIPS-180, 1993.

[35] NIST. Secure Hash Standard. In Federal Infor-
mation Processing Standard, FIPS-180-1, 1995.

[36] Antoine Joux. Multicollisions in iterated hash
functions. Application to cascaded constructions.
In Advances in Cryptology-CRYPTO 2004, pages
306–316. Springer, 2004.

[37] Stefan Lucks. A failure-friendly design principle
for hash functions. In Advances in Cryptology-
ASIACRYPT 2005, pages 474–494. Springer,

2005.
[38] Hongjun Wu. The Hash Function JH. Submission

to NIST (round 3), 2011.
[39] Guido Bertoni, Joan Daemen, Michaël Peeters,

and Gilles Van Assche. Keccak sponge function
family main document. Submission to NIST,
2009.

[40] Elena Andreeva, Bart Mennink, Bart Preneel,
and Marjan Skrobot. Security analysis and com-
parison of the SHA-3 finalists BLAKE, Grstl, JH,
Keccak, and Skein. In Progress in Cryptology-
AFRICACRYPT 2012, pages 287–305. Springer,
2012.

[41] Rishiraj Bhattacharyya, Avradip Mandal, and
Mridul Nandi. Security analysis of the mode of
JH hash function. In Fast Software Encryption,
pages 168–191. Springer, 2010.

[42] Javad Alizadeh, Mohammad Reza Aref,
and Nasour Bagheri. Artemia v1.
CEASAR Cryptographic Competitions,
2014. http://competitions.cr.yp.to/

caesar-submissions.html.
[43] Farzaneh Abed, Christian Forler, and Stefan

Lucks. General Overview of the First-Round
CAESAR Candidates for Authenticated Ecryp-
tion. IACR Cryptology ePrint Archive, 2014.
URL http://eprint.iacr.org/2014/792.

[44] Philipp Jovanovic, Atul Luykx, and Bart Men-
nink. Beyond 2c/2 Security in Sponge-Based Au-
thenticated Encryption Modes. In Advances in
Cryptology - ASIACRYPT 2014. Springer, 2014.

[45] Megha Agrawal, Donghoon Chang, and Somi-
tra Sanadhya. sp-AELM: Sponge based Authen-
ticated Encryption Scheme for Memory Con-
strained Devices. In ACISP 2015, pages 451–468.
Springer, 2015.

[46] Viet Tung Hoang, Reza Reyhanitabar, Phillip Ro-
gaway, and Damian Vizár. Online Authenticated-
Encryption and its Nonce-Reuse Misuse-
Resistance. In CRYPTO 2015, 2015.

[47] Elena Andreeva, Joan Daemen, Bart Mennink,
and Gilles Van Assche. Security of keyed sponge
constructions using a modular proof approach.
In FSE, 2015.

[48] CAESAR Candidates Speed Comparison, 2014.
http://www1.spms.ntu.edu.sg/~syllab/

speed/.
[49] Mihir Bellare and Phillip Rogaway. The Security

of Triple Encryption and a Framework for Code-
Based Game-Playing Proofs. In EUROCRYPT,
volume 4004 of Lecture Notes in Computer Sci-
ence, pages 409–426. Springer, 2006.

[50] Donghoon Chang and Mridul Nandi. Improved
indifferentiability security analysis of chopMD
hash function. In FSE, 2008.

http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://eprint.iacr.org/2014/792
http://www1.spms.ntu.edu.sg/~syllab/speed/
http://www1.spms.ntu.edu.sg/~syllab/speed/

20 JHAE: A Novel Permutation-Based Authenticated Encryption Mode — J. Alizadeh, M. R. Aref, et al.

Javad Alizadeh received M.S. degree in

Telecommunication in the field of Cryptogra-
phy from Imam Hossein University, Tehran,

Iran, in 2010. He serves as a member of Infor-

mation Systems and Security Lab (ISSL) at
the Electrical Engineering Department of Sharif University of

Technology. He is currently working toward the Ph.D. degree
in Cryptography at Imam Hossein University. His research

interest include Symmetric Cryptology, with an emphasis on

Block Cipher and Authenticated Encryption.

Mohammad Reza Aref received the B.S.
degree in 1975 from the University of Tehran,

Iran, and the M.S. and Ph.D. degrees in 1976
and 1980, respectively, from Stanford Uni-
versity, Stanford, CA, USA, all in electrical

engineering. He returned to Iran in 1980 and
was actively engaged in academic affairs. He
was a faculty member of Isfahan University

of Technology from 1982 to 1995. He has been a Professor
of Electrical Engineering at Sharif University of Technology,

Tehran, since 1995, and has published more than 290 technical

papers in communications, information theory and cryptog-
raphy in international journals and conferences proceedings.

At the same time, during his academic activities, he has been
involved in different political positions. First Vice President of
I.R. Iran, Vice President of I.R. Iran and Head of Management

and Planning Organization, Minister of ICT of I.R. Iran, and
Chancellor of University of Tehran, are the most recent ones.
His current research interests include areas of Communication

Theory, Information Theory, and Cryptography.

Nasour Bagheri is an assistant professor at
Electrical Engineering Department, Shahid

Rajaee Teacher Training University, Tehran,
Iran. He is the author of over 50 articles in
information security and cryptology.

Alireza Rahimi is an assistant professor at
Faculty of Communication and Information

Technology, Imam Hossein University, Tehran,
Iran. His interesting is the mathematics of
cryptography. He is the author of some articles

in mathematics and cryptography.

	1 Introduction
	2 JHAE Authenticated Encryption Mode
	2.1 Encryption and Authentication
	2.2 Decryption and Verification

	3 Security Proofs
	3.1 Privacy
	3.2 Integrity

	4 Design Rationale
	5 Conclusion
	Appendices
	Appendix A Sequence of Games

