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A B S T R A C T

This paper presents a semantic method for aerial image segmentation.

Multi-class aerial images are often featured with large intra-class variations

and inter-class similarities. Furthermore, shadows, reflections and changes in

viewpoint, high and varying altitude and variability of natural scene pose serious

problems for simultaneous segmentation. The main purpose of segmentation of

aerial images is to make subsequent recognition phase straightforward. Present

algorithm combines two challenging tasks of segmentation and classification

in a manner that no extra recognition phase is needed. This algorithm is

supposed to be part of a system which will be developed to automatically locate

the appropriate site for Unmanned Aerial Vehicle (UAV) landing. With this

perspective, we focused on segregating natural and man-made areas in aerial

images. We compared different classifiers and explored the best set of features

for this task in an experimental manner. In addition, a certainty based method

has been used for integrating color and texture descriptors in a more efficient

way. The experimental results over a dataset comprised of 25 high-resolution

images show the overall binary segmentation accuracy rate of 91.34%.

c© 2014 JComSec. All rights reserved.

1 Introduction

Segmentation is the process of partitioning an image
into non-overlapping meaningful regions such that
each region is uniform based on a specific homogeneity
measure and no union of any adjacent segments fulfills
the homogeneity criterion [1] . Most of the tasks based
on processing of aerial images demand a full descrip-
tion of the scene. The main purpose of segmentation of
aerial images is to make subsequent recognition phase
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straightforward. High and varying altitude, effects
of shadow and reflection, varying natural scene, and
changes in viewpoint pose a great challenge to the seg-
mentation of aerial images. Furthermore, most recog-
nition methods benefit from structure information.
However, even in high resolution aerial images, there
is no enough detail and structure information. There-
fore, common recognition methods are not directly
applicable to aerial images. These considerations add
to the complexity of the segmentation problem which
is already yet to be fully resolved in the computer
vision and image processing community. As a result,
any attempt that can reduce the online computation
demand while making the system robust against the
above challenges is of significant importance. For this
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purpose, a semantic segmentation approach is pro-
posed that incorporates invariant and robust descrip-
tors to encode distinctive image information.

Semantic or class specific segmentation is the task
of labeling image pixels (or areas) to a set of semantic
classes such that resultant segments represent high-
level information [2] like land cover types in this work.
It combines two challenging tasks of segmentation and
classification in a manner that no extra recognition
phase is needed. This way, not only different areas of
the test image are segmented but also similar segments
take the same label. Classification can be performed
either unsupervised or supervised. In unsupervised or
clustering techniques, samples in the feature space are
not labeled. To distinguish different classes, samples
are divided based on some similarity/ dissimilarity
measure. Due to the variable number of classes and
scene variability in aerial images, unsupervised tech-
niques may result in over- or under-segmentation. On
the other hand, supervised approaches need a training
phase prior to segmentation. During this phase, a set
of input features is computed for each sample image
of favorite classes. These features form a database of
predefined classes. A label is assigned to each sample
in the database which shows the class that the sam-
ple belongs to. Finally, representative features of an
unknown sample are compared with a database of a
certain number of classes and the most likely label is
computed. The following section presents a brief re-
view of recent researches in aerial image segmentation.

2 Related work

Ojala and Pietikäinen [3] used pixel-classification
as the final step of their segmentation algorithm to
improve the localization of the boundaries. Hu et
al. [4] applied the proposed method by Ojala, and
Pietikäinen on seven aerial images and reported overall
misclassification rate of 15.7%. They used an adaptive
weighted combination of texture, intensity, and color
features. Each image was segmented into four classes
including water, residential area, wood and crop.

Permuter et al. [5] segmented natural and man-made
areas in aerial images on the basis of Gaussian mixture
models (GMMs). They tested the performance of their
method over a database including seven gray-scale
aerial images with average classification accuracy of
85.2%.

Yang and Newsam [6] evaluated Gabor texture fea-
tures and Scale-Invariant Feature Transform (SIFT)
descriptors for extracting 11 land cover classes. They
applied these spatial features to maximum a posteriori
(MAP) and support vector machine (SVM) classifiers.
Their results are shown in Table 1.

Xu et al. [7] presented a Bag-of-Visual Words (BOV)
representation for a four-class land-use segmentation
problem. By means of a combination of spectral and
texture features with SVM classifier they achieved
the overall classification accuracy of 93.12% over 882
“single-class” images.

Kluckner et al. [8] proposed a novel feature repre-
sentation based on covariance matrices and Sigma
Points. For accurate semantic classification into five
classes, they applied multiple appearance cues includ-
ing color, edge responses, and height information to
multi-class random forest (RF) classifier. The experi-
mental results of their method are given in Table 1.

Nitze et al. [9] compared the performance of ma-
chine learning techniques including Artificial Neural
Network (ANN), Support Vector Machine (SVM) and
Random Forest (RF) in the task of agricultural crop
classification in remote sensing images. The best result
they achieved was 88.1% overall accuracy for SVM.
Their results are given in Table 1.

Yuan et al. [10] presented a systematic benchmark-
ing of aerial image segmentation. They compared six
major segmentation algorithms including JSEG [11] ,
mean shift, the multi-resolution region merging algo-
rithm (MSEG), statistical region merging (SRM), the
graph-based region merging algorithm (Felz-Hutt),
and oriented watershed transform ultra-metric con-
tour maps with globalPb as contour detector (gPb-
owt-ucm). They used one boundary and two region
based metrics to quantitatively evaluate and compare
segmentation task. Since their evaluation method is
completely different from other researches presented
in Table 1. , we avoid bringing their research in the
table and refer interested readers to their paper for
more details.

Table 1 provides a brief literature review on class
based segmentation of high resolution aerial images.

This paper provides: 1) semantic segmentation of
aerial images using color and texture descriptors, 2)
testing four representative learning algorithms, 3) com-
parison between LBP- based texture descriptors for
segmentation of aerial images, and 4) the fusion of
color and texture features to improve segmentation
results.

The rest of the paper is organized as follows. In Sec-
tion 3 the proposed segmentation method is described.
In Section 4, the segmentation results obtained by
four representative classifiers and color histograms are
compared. The texture descriptors tested in this work
are explained and compared in Section 5. Section 6
shows experimental results of the proposed segmen-
tation algorithm using color and texture fusion and
final conclusion is presented in Section 7.
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Table 1. Brief literature review on class based segmentation of aerial images.

Author Year Method Overall classification Accuracy

Hu et al. [4] 2005
LBP/C + saturation/hue distribution

+ grey-level histograms
84.29%

Permuter et al. [5] 2006
energies of wavelet subbands and DCT
regions + mean and covariance of the

RGB and LAB values
85.2%

Yang and Newsam [6] 2008
SIFT & Gabor + MAP & SVM as

classifier

SIFT Gabor

MAP 84.5% 73.9%

SVM 76.2% 89.8%

Xu et al. [7] 2010

the mean and standard deviations of
three spectral bands (i.e., RGB) + 48

texture features computed from 12
GLCMs + SVM

93.12%

Kluckner et al. [8] 2010
covariance matrices and Sigma Points

+ randomized forest

Building Water Grass Tree Street

92.7% 85.8% 94.4% 92.6% 95.3%

Nitze et al. [9] 2012
five different vegetation indices
including ground cover, NDVI,

MTVI2, NDVIRE, MTCI

ANN SVM RF

87.1% 88.1% 87.4%

Feature 
Extraction Normalization DataBase

Training

Feature 
Extraction Normalization

Test

ClassificationWindowing

Figure 1. Proposed image segmentation scheme.

3 Proposed method

Before detailing our approach, it is necessary to point
out that most of previous works in aerial image seg-
mentation area, such as those reviewed in this work,
have used high quality and high resolution satellite
images. Here, to investigate the performance of the
proposed method, we assumed that proper images are
available and applied our proposed method to color
images obtained from Google Earth. However, in real
application a preprocessing and image restoration or

enhancement step may be necessary. Figure 1 shows
the block diagram of the proposed segmentation algo-
rithm.

Different steps of the proposed algorithm are de-
scribed in the following sections. The image data
used in the experiments was obtained from the city
of Venice, Italy using Google Earth. We collected 80
images from different scenes. Training samples were
cropped from 55 images and the rest 25 images were
set aside for the segmentation task.
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Table 2. Computation formulas for some typical distance metrics.

Distance metric Formula

Minkowsi (Lk-norm) [12] Dk(A,B) = (
∑S
i=1 |Ai −Bi|

k
)

1
k

L1-norm (Manhattan) D1(A,B) =
∑S
i=1 |Ai −Bi|

L2-norm (Euclidean) D2(A,B) =
√∑S

i=1 (Ai −Bi)2

Non-InterSection [13] D(A,B) =
∑S
i=1 (Ai −

∑S
i=1mini(Ai, Bi)

Chi-square D(A,B) =
∑S
i=1

(Ai−Bi)
2

Ai+Bi

3.1 Training

In this paper, the problem is restricted to detecting
5 classes include “tree”, “grass” and “water body” as
natural and “building” and “road” as man-made sites.
To train the classes, homogeneous rectangular areas of
different sizes on images of dataset were selected. Then
each area is labeled to one of the predefined classes.
We provided 160 images of each class and therefore
in total we had 800 training images. After choosing
training images for each class, a set of features is
computed for them. To make comparison of different
samples possible, it may be necessary to compute
a suitable transformation like normalization for the
feature vectors.

3.2 Test

In order to extract features from the test image, a
simple strategy is to do measurements in a window.
This operation has two stages:

• Feature extraction: in this stage the window is
placed and moved over the image pixels and a set
of descriptors is calculated for each window.

• Classification: the calculated descriptors of the
window are compared with those in the dataset
and the most likely label is assigned to the win-
dow.

The window size depends on image resolution and fine-
ness of its texture. In general, window size should be
large enough to reflect the local characteristics of the
test image in feature vectors. On the other hand, large
window causes increase in computations and loss of
image details and boundary localization accuracy. For
more accurate segmentation, sweeping windows have
overlap. Adjacent pixels in natural images generally
have similar characteristics and belong to the same
class. So, larger overlapping means more redundant
computation. Besides, partly cover between sweeping
windows will results in a more uniform and accurate
segmentation. Briefly, windows overlap specifies com-
putation time and classification accuracy. We heuris-
tically subdivide the input image to overlapping win-

dows of size 45×45 with sweeping step of 10 pixels.
This means areas of 10×10 are assumed to have same
label.

4 Comparisonbetweendifferent classi-
fiers

There are different types of machine learning algo-
rithms applicable in segmentation task. After intro-
ducing a brief description of some prominent cases of
these, the segmentation results using these algorithms
have been provided for comparison.

4.1 k-Nearest Neighbor (k-NN)

k-Nearest neighbor (k-NN) works based on the intu-
itive principle that in a feature space, the samples
with similar characteristics generally exist close to-
gether. Because of possible outliers, a judgment solely
based on the nearest neighbor may result in error. To
achieve robustness against outliers, k-NN classifier
finds the k closest feature samples in the training set
and returns the most frequently class label within the
k-subset [12]. The two parameters of a k-NN classifier
are k and a distance metric. k is set to 10 with respect
to the number of the trained samples per class. The
choice of the distance metric varies according to the
features. The formulas for computation of the distance
metrics used in this work are given in Table 2. The
parameter S is the length of the two vectors which
their distance is to be computed.

4.2 Artificial Neural Network (ANN)

Neural networks consist of a number of simple proces-
sors or perceptrons [14]. An ANN is typically char-
acterized by its architecture and its learning process.
Here, we used a feed forward Multi-Layer-Perceptrons
(MLP) consisting of one input layer, one hidden layer
and one output layer. The number of hidden layers de-
pending on the complexity of the problem and input
features is selected via trial and error. The number
of neurons comprising the input layer is equal to the
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sum of the lengths of the input features. According
to our experience it is better to choose the number of
hidden neurons to be the square root of the input neu-
rons. The number of output neurons depends on the
number of classes. For binary classification, a single
output neuron is sufficient. The goal of the training
procedure is to find a set of weights that allow the net-
work to perform correctly on the training examples.
In the MLP network used in our study, the relation-
ship between the input neurons (im) and the output
neuron (o) is determined by:

o = f [
∑
n

wng(
∑
m

wnmim + θin) + θhid] (1)

The activation function for both the hidden and out-
put layers is sigmoid function: f(x) = g(x) = 1

1+e−x .
The activation function defines the output of neurons
in terms of their weighted inputs. In Equation (1) wn
is the weight from the nth hidden neuron to the out-
put neuron, wnm is the weight from mth input neuron
to the nth hidden neuron, θin and θhid are the in-
put and hidden biases, respectively. Network weights
are iteratively adjusted and computed based on back-
propagation (BP) with momentum terms, as follows:

∆wjk
(t+ 1) = αδkZj + µ∆wjk

(t) (2)

Where Zj = g(θj +
∑
k wjkxk , xk is the activity level

of the kth neuron in the previous layer and wjk is
the weight of the connection between the j th and
kth neurons. δk is the error between the desired and
actual ANN output value. α is the learning rate, µ
is the momentum and t is the number of iterations.
The momentum term determines the effect of past
weight changes on the current weight update. BP is
a gradient descent method and can get stuck in local
minima. The momentum term prevents the network
from trapping into local minima and speeds up the
convergence of the network. In this study, the learning
rate and momentum were optimized through trial and
error and the weights were randomly initialized within
[-1,1].

4.3 Support Vector Machine (SVM)

In this method, data is transformed to a P-dimensional
vector using a kernel function so that it becomes sep-
arable using a P-1dimensional hyper plane. There are
many possible hyper planes but, a rational choice is to
choose the hyper plane creating maximum margin be-
tween the separating hyper plane and the samples on
either side of it [15] ). SVM algorithm originally solves
binary classification problems. In this work, general-
ization to multi-class classification is accomplished
by training multiple one-against-the-others classifiers.
The kernel function is homogeneous polynomial of de-
gree 3 and the soft margin constant which determines

the upper bound on the Lagrange multipliers is 1000.
Interested readers are referred to [16] for more details
on SVM.

4.4 Random Forest (RF)

Random forest is a combination of decision trees such
that each tree is formed based on a set of random deci-
sion functions selected independently. In the training
phase, the distribution of different classes for each
tree is computed, then in the test phase the class that
is the mode of the class’s output by individual trees
is selected for assigning label to a new sample [17] .
Each node in a tree (except leaf nodes) divides the
data into two disjoint subsets. The decision function
used in this study is a simple comparison with a nor-
mally distributed random threshold which is generated
between the minimum and maximum values of the
trained features. In the training phase, each random
split function is scored using the Shannon entropy [18].
Shannon entropy quantifies the homogeneity of the
labeled samples in the child nodes:

H = −
∑
c

nc
N
log

nc
N

(3)

Where N is the number of the samples passing
through the current node and nc is the number of
samples among the N inputs belonging to class c. For
perfectly homogeneous data containing only a single
class, the entropy is 0. Therefore, efficient decision
rules can be selected based on the condition of mini-
mum entropy. In our tests, the number of the tress is
100.

4.5 Comparison of Classifiers

In this section, the four abovementioned classifiers
are evaluated for semantic segmentation using the
histogram of RGB components as the color descriptor.
The feature vector is constructed by concatenating
three histograms of three color channels in RGB space.
Each histogram has 32 bins and the color descriptor
is a vector of size 3×32=96 in length. As mentioned
before, the parameters of each classifier are tuned to
achieve the best result. The results are reported from
average over 5 runs (except for k-NN). Parameters
were kept fixed for all the experiments.

Table 3 shows the confusion matrix of the pixel-wise
semantic labeling. The diagonal elements of this ma-
trix show the correct per-class semantic segmentation
rates. Other elements show the “inter- class” misclas-
sification rate. In addition to the confusion matrix,
the quantitative segmentation results of binary seg-
mentation are given in Figure 2. In the binary case,
the segmentation is considered as the problem of seg-
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Table 3. Comparison of segmentation error between four classifiers using RGB histograms.

Building Grass Road Tree Water

k-NN

Building 76.80% 5.90% 6.90% 9.20% 1.20%

Grass 1.20% 81.30% 4.90% 12.60% 0

Road 2.70% 2.80% 81.20% 12.40% 0.90%

Tree 3.10% 4.30% 3.30% 87.90% 1.40%

Water 0.60% 9.90% 1.30% 4.60% 83.60%

ANN

Building 78.20% 0.90% 7.50% 13.40% 0

Grass 1.30% 74.20% 7.10% 17.40% 0

Road 2.00% 2.00% 82.00% 12.90% 1.10%

Tree 3.40% 5.00% 3.90% 86.20% 1.50%

Water 0 13.10% 1.80% 5.10% 80.00%

SVM

Building 77.90% 0 3.30% 18.80% 0

Grass 2.00% 63.70% 4.40% 29.90% 0

Road 4.70% 1.20% 76.30% 16.90% 0.90%

Tree 3.40% 3.20% 2.50% 89.70% 1.20%

Water 1.40% 13.10% 0.70% 5.90% 78.90%

RF

Building 46.90% 0.20% 10.90% 42.00% 0

Grass 0.90% 64.20% 8.90% 26.00% 0

Road 1.30% 0.30% 55.70% 31.70% 11.00%

Tree 0.60% 3.70% 2.90% 92.60% 0.20%

Water 0.50% 7.20% 31.30% 8.80% 52.20%

regating man-made and natural areas. In Figure 2
error type I is the percentage of image pixels belong-
ing to building or road classes and labeled as natural
and error type II pertains to those pixels of the three
natural classes labeled as man-made.

The segmentation errors are calculated over 25 aerial
images. These values are calculated based on pixel-
wise comparison between manually generated ground-
truth and the computerized results.

As shown in Table 3 and Figure 2, among the four
classifiers, k-NN classifier yielded the best result. ANN
and SVM exhibited nearly the same mean overall
accuracies as k-NN and RF produced the worst results.
In the next step, to improve the segmentation accuracy
we took advantage of texture information.

5 Texture description

Texture descriptors are values and arrays that encode
important distinctive information about a texture area.
Texture descriptors can be applied to a rectangular
or alternatively free-form image area. In an ideal case,
they should be compact and invariant to changes
in viewpoint, rotation angle, illumination and scale.
Among different available texture descriptors, some
variations of Local Binary Patterns (LBP) have the
advantage of being invariant to rotation, small scale
changes and monotonic changes in intensity. LBP
can be very compact, easily computed and compared
against. All these characteristics make LBP a perfect
choice for our application. Since the segmentation
algorithm presented in this work relies on LBP to
describe texture, a brief description of LBP and its
variations is presented in the following subsections.
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Figure 2. Comparing classifiers using RGB histograms
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Figure 3. LBP code

5.1 Local Binary Pattern

To explain LBP descriptors we first describe LBP
codes. LBP codes are defined for each pixel in the area
which is to be described. The LBP code for each pixel
is defined over a circular symmetric neighborhood
about the pixel for which the LBP code is to be com-
puted. For each pixel on the circular neighborhood of
size P and radius R, a LBP bit is assigned. This re-
sults in a P bit binary LBP code which is achieved by
thresholding the intensity value of each pixel on the
circular neighborhood at the value of the central pixel.
If the value of the neighboring pixel is less than the

central pixel, its LBP bit code is assigned to be zero.
Otherwise the LBP bit code is assigned to be unity.
This procedure is illustrated in Figure 3. This proce-
dure is performed for every pixel in the area (for exam-
ple rectangular window). This results in a LBP image.
Then the histogram of LBP codes for this window is
computed and considered as a texture descriptor for
this area. As discussed above, LBP is defined for a
circular neighborhood of size P. If P does not divide
360o, for those samples which are not at the center of
pixels the gray values are estimated by interpolation.
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Figure 4. Rotation invariant LBP by rotating neighborhoods to their minimum value. Black and white circles represent zeros and
ones respectively.

5.2 Rotation invariance

The LBP patterns obtained in the previous step are
not rotation invariant. This is because a rotation in
the texture results in a circular shift in the LBP his-
togram. To make LBP rotation invariant, one idea is
to iteratively apply a circular bit-wise right shift on
the binary code and choose the minimum code. This
is further explained in Figure 4. Since this procedure
alters LBP codes in the pixel level, it makes LBP de-
scriptors both locally and globally rotation invariant.
We desire a texture descriptor to be globally rotation
invariant. However, local rotation invariance is unde-
sired as it disregards local orientation of texture. This
issue will later be further discussed in Section 5.6.

5.3 Compactness

It is a reasonable idea to give more importance to
those LBP patterns which are seen in the real word
more frequently. Ojala et al. [19] showed that more
than 94% of LBP patterns seen in the real world are
“uniform”. By uniform LBP codes, they mean those
binary patterns that have only up to two transitions
from zero to one or vice versa. Non-uniform LBP codes,
however, have more than two transitions from zero-
bits to one-bits or vice versa. Figure 5 demonstrates
this definition.

All non-uniform LBP patterns are assigned a single
LBP code. Therefore, the assigned code to uniform
rotation invariant LBP patterns can be simply the
number of one-bits in the pattern [20] . We refer to this
way of encoding LBP patterns that takes advantage
of dividing LBP patterns to uniform and non-uniform
ones as “LBP riu”. This makes the LBP code to be
more compact and removes extra nearly zero bins in
the LBP histogram. Although, it reduces the number

of bins in the histogram, it increases the efficiency of
LBP descriptor and elevates the need for histogram
quantization.

5.4 Scale Invariance

LBP operator can be performed in different scales.
This means by varying the parameters P and R, we
can have different LBP patterns which encode tex-
ture information in different scales. Histograms of
such LBP operators are combined to have a multi-
resolution LBP descriptor. In fact, if the metrics used
to compare LBP histograms have additive property,
then the histograms can be safely concatenated to
model the joint distribution of “assumingly” indepen-
dent texture events [21].

5.5 Adding Contrast to LBP

Although contrast is an important quality of texture,
LBP operator ignores the values of gray level differ-
ences. Adding contrast information can improve seg-
mentation accuracy. Indeed, texture can be considered
as a two-dimensional phenomenon which is character-
ized by two qualities i.e. spatial structure or pattern
and contrast [3] . Pattern is independent from gray-
scale but contrast is not; in addition, contrast does not
change with rotation however pattern does. In view of
that, these measures complement each other usefully.

Local contrast could be measured in a circular sym-
metric neighborhood like LBP [19]:{

V ARP,R = 1
P

∑P−1
P=0(gP − µ)2

µ = 1
P

∑P−1
P=0 gP

(4)

Where gP refers to gray level of neighboring pixels.
Let (P1, R1) and (P2, R2) represent neighborhood size
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Figure 5. Examples of uniform and non-uniform patterns. The corresponding code for each uniform rotation invariant pattern is
equal to the number of ones in the pattern. All other patterns assigned to a single code.

and radius for LBP and VAR respectively. Although
there is no any restriction for calculating LBP and
VAR in different neighborhoods and choosing different
(P,R), usually P1 = P2 and R1 = R2 is chosen.

Joint distribution of LBP and VAR is a powerful
tool for texture analysis. But according to the Equa-
tion (4) V ARP,R is a continuous quantity and should
be quantized. In order to achieve optimum resolution,
a comprehensive and numerous set of training images
is needed to estimate the range of V ARP,R variations.
Then for dividing this range into N equal parts, thresh-
old values should be calculated. However, quantization
with this method has three limitations. First, a train-
ing stage is necessary to determine threshold values.
Second, because different classes may have very differ-
ent contrast, quantization depends on training sam-
ples. Finally, third limitation is that finding optimal
N based on feature vector size and the discrimination
of the classes is difficult. If the number of quantization
levels (N) is small, V ARP,R will be useless and classes
will not be separated correctly. Conversely, choosing
large N leads to histogram instability and increasing
size of the feature vector.

To overcome these limitations Guo et al. [22] pro-
posed a simple yet effective method for combining
contrast to local LBP histograms. They use V ARP,R
as an adaptive weight for calculating the histogram of
LBP. This feature which is named LBPV is calculated
as follows [22]:

LBPVP,R(k)|kε[0,K] =
∑
x

∑
y

w(LBPP,R(x, y), k)

(5)

w(LBPP,R(x, y), k) =


V ARP,R(x, y), LBPP,R(

x, y) = k

0 otherwise
Consequently, LBPV is a simple representation of
LBP / VAR two-dimensional distribution which is
smaller and does not require quantization of VAR
values.

5.6 Local Binary Pattern Histogram Fourier
(LBP-HF)

Ahonen et al. [23] introduced a rotation invariant
texture descriptor named Local Binary Pattern His-
togram Fourier (LBP-HF) which is derived from the
magnitude of discrete Fourier transform of uniform
LBP histograms. Unlike the earlier local rotation in-
variant features discussed in Section 5.2 , the rotation
invariance of LBP-HF descriptor is attained globally.
This means that the descriptor is invariant against
rotations of the whole image but at the same time,
if only some parts of the image are rotated the de-
scriptor will differ. Details on how to calculate the
descriptor are given in [23].

5.7 Evaluating texture descriptors and simi-
larity measures

In this section we evaluate different variations of LBP
and determine the most suitable distance measure
for each descriptor. The following texture descriptors
were applied to the training images:

• LBP riu(8,1) (applied on gray scale image)

• LBP riu(8,1)+(16,2) (Multi-scale LBP applied on gray

scale image)
• LBP riu(8,1)+(16,2) (applied on RGB channels)

• LBP riu(8,1)+(16,2) (applied on HS channels)
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• LBPV (applied on gray scale image)
• LBP-HF (applied on gray scale image)

In the case of LBPV and LBP-HF descriptors, his-
tograms of “uniform LBP” codes were computed in
(8,1) and (16,2) neighborhoods to achieve scale invari-
ance. To choose the most suitable descriptor among
the above descriptors, we have evaluated them in iden-
tifying the right label for a test set of single class
homogenous textured images (275 single class test
images; that is 55 images per class) using k-NN classi-
fier. For each texture descriptor, a number of different
distance metrics are examined and the most effec-
tive one is selected. These metrics include L1-Norm,
L2-Norm [12] , Histogram Intersection [13] and Chi
square distance.

The results of applying each texture descriptor with
the abovementioned distances are given in Table 4.

As shown in Table 4, the combination of LBP-HF
with L2-Norm distance metric outperforms the other
cases. LBP-HF is invariant against global rotations of
input image. This characteristic is very important in
segmentation of aerial images, however, the length of
the feature vector should also be considered.

It is important to note that k-NN classifier can be
replaced with any other classifier or machine learning
approach such as Random forests, AdaBoost or SVM.
Since k-NN has been sufficiently capable of classifying
LBP-HF descriptors, we avoided the use of more com-
plex classifiers. As a result, the success of algorithm
can be attributed to the algorithm itself and not the
complexity of the classifier.

5.8 Color and texture fusion

We tested our semantic segmentation algorithm on
aerial images using the combination of color and tex-
ture descriptors. In view of the fact that it is unlikely
that both color and texture descriptors make the same
mistake, they can correct each other. As shown in Ta-
ble 4 extracting LBP descriptors from color channels is
not an efficient way for using color information. Color
and texture features fusion can be carried out by sim-
ply connecting two feature vectors to each other. The
other option is to classify color and texture separately
and then evaluate the accuracy of each classifier to
make final decision. This way, it is possible to set the
parameter for each classifier independently in order
to achieve the optimum result.

The color descriptor (a vector of size 96 constructed
from 32-bin-histogram of R, G and B channels) and
the texture descriptor of our choice, (here LBP-HF)
are applied to each area of the test image. The decision
of using LBP-HF among all different variations of
LBP is based on the evaluation study explained in

Section 5.7. The experiments show that the most
successful combination is LBP-HF and L2-Norm. The
pool of LBP-HF descriptors for the samples of the five
classes accompanied with their semantic label is fed to
a k-NN classifier. For the color classifier the similarity
measure is set to Histogram Intersection. For k-NN
classifier the maximum number of agreed votes among
k neighboring samples in the feature space is used as
a measure for accuracy. The process of how to make
final decision is shown in Figure 6. The fusion weights
of color and texture are the same.

Figure 6. Fusion of color and texture descriptors in classifier
level. Label and Count are the final label and agreed vote

count of each classifier respectively.

6 Results and discussion

As Figure 7 shows, in spite of our limitations for gath-
ering an efficient texture database, LBP-HF enhanced
the segmentation results. In order to display segmen-
tation result graphically buildings are shown in white,
road in gray, water in blue, grass in green and trees in
dark green.

Figure 8 shows a number of sample results. The
results obtained from testing the algorithm over 25
aerial images are summarized in Table 5.

An important aspect of automatic site selection for
UAV landing application is that some classes are safer
to be misclassified than other classes. For example, it
is very dangerous to classify buildings as grass. This is
because grass is a safe area for landing while buildings
are unsafe areas. As a result, a more meaningful clas-
sification rate is computed as shown in the right half
of Table 5. This classification is based on a two class
labeling: safe (Water, Grass, and Tree) and unsafe
(Building, Road) areas.

One major difficulty during experiments was the
collection of ground truth to evaluate segmentation re-
sults. We used manually segmented images as ground
truth. Manual segmentation of high resolution images
is tiresome and inevitably involves imprecision. Nev-
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Table 4. Comparison between classification error rates for different versions of LBP with 4 distance metrics using k-NN classifier.

Texture Feature
Feature
Vector
Length

L1-norm L2-norm Chi-square
Histogram
Intersection

LBP riu(8,1) 10 20.4% 19.6% 18.5% 20.4%

LBP riu(8,1)+(16,2) (Multi scale) 28 14.9% 14.9% 13.8% 14.9%

LBP riu(8,1)+(16,2) (RGB channels) 84 14.2% 13.1% 13.1% 14.2%

LBP riu(8,1)+(16,2) (HS channels) 56 21.1% 21.4% 19.6% 21.1%

LBPV 302 22.5% 31.3% 22.2% 22.5%

LBP-HF 176 8% 6.9% 7.6% 33.4%

Building Grass Road Tree Water

Figure 7. (1) Original image (2) Segmentation result using RGB histograms (3) Segmentation result using LBP-HF (4) Segmentation
result using color and texture fusion. The texture classifier compensates the color classifier weakness in classifying water and the

color classifier corrects texture classifier failure in classification of grass and tree classes.

ertheless, we tested the algorithm over a database
containing 25 high resolution images which is consid-
erably bigger than test sets used in previous works
outlined in Table 1.

The comparison between total error rates in Table 3
and 5 demonstrates that adding texture information
to semantic segmentation has improved average seg-

mentation accuracy by 2.87%. Intra-class misclassifi-
cation accounts for 37.7% of the total error. Regarding
the fact that there is no any meaningful distinction
between safe classes or unsafe classes, this part of er-
ror can be discarded. Using the proposed method we
could detect unsafe sites with 95.3% and safe sites
with 96.1% accuracy (Note that we compute the er-
ror through pixel by pixel matching). The specificity
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Figure 8. Input image (top row) and segmentation result (bottom row).

Table 5. Segmentation error rate over 25 aerial images using two k-NN classifiers for color and texture.

Confusion Matrix

Binary Pixel-Level Labeling Error

Inter-class
Intra-class Total

Unsafe to
Safe

Safe To
Unsafe

BuildingGrassRoad Tree Water

Building 83.4% 1.3% 6.7% 8.6% 0

Grass 0.7% 84.8% 5.9% 8.6% 0

Road 2.7% 4.1% 82.1% 10.4% 0.7%

Tree 3.9% 2.6% 3.8% 87.5% 2.2%

Water 0 0 1.8% 4.9% 93.3%

4.74% 3.92% 5.24% 13.89%

and sensitivity indices of the method for detection of
unsafe sites are 91.13% and 94.28% respectively. Ac-
cordingly, the algorithm extracts unsafe zones with
the accuracy of 93.05%. The results of detection of un-
safe sites obtained by the proposed method are given
on a Pie chart in Figure 9 to be compared graphically.

Our experimental results would not be comparable
with previous works mainly because of basic differences
existing between images in terms of resolution, lighting
and scene complexity. More importantly, the number
of images greatly affected classification accuracy. In
addition, there are a variety of methods for evaluating
results which makes direct comparisons difficult. The
only conclusion from browsing similar case studies of
automatic classification of aerial images is that our
system performed well and confirms that the proposed
system can be incorporated into industrial systems

Figure 9. Unsafe regions detection results obtained by the
proposed method over a database of 25 multi-class images

for the automated analysis of similar images.



July 2014, Volume 1, Number 3 (pp. 225–238) 237

7 Conclusion and future directions

This paper presents a semantic segmentation algo-
rithm for aerial image understanding. Regarding the
nature of aerial images, features must be invariant to
rotation and scale. In this paper two separate k-NN
classifiers recognize image texture and color. Local
texture characteristics of the gray image and local
color histograms are calculated and classified individ-
ually. Final segmentation is obtained by evaluating
the certainty with each classifier (color or texture) in-
dependently. Employing two classifiers is motivated
by this observation that it is unlikely that both clas-
sifiers make mistake in the same case. Therefore, it
is possible to correct errors made by each other. In
aerial images, like most natural images neighboring
pixels usually have similar characteristics. Based on
this quality, calculations can be reduced and better
segmentation can be obtained. Accordingly, classifi-
cation result of each feature vector is assigned to a
group of adjacent pixels (a patch) instead of label-
ing each pixel. The proposed method, which is simple
and rapid, is applicable to any type of color-texture
images. The other outcome of comparison between
obtained results is that proposed method for fusing
color and texture information in classifier level is more
efficient than applying LBP operator on color chan-
nels. The main advantage of the proposed method is
that it facilitates using different clues and fusing them.
Although, the histogram of RGB channels was a dis-
tinctive descriptor for our database, we used a texture
descriptor to show how different descriptors can be
fused easily. The error rate of the proposed algorithm
is small and segmentation results for aerial images are
visually acceptable. The majority of the segmentation
error pertains to intra-class misclassification such as
when grass mixes up with tree. Because we do not con-
sider specific distinction between the two risk classes
or three safe classes, this part of segmentation error
is not very important. In addition, the comparison
of the obtained results with similar works confirms
the effectiveness of the proposed method especially
that the number of the images which the algorithm is
tested on is considerably more. However, basic differ-
ences in terms of image databases and the methods for
reporting results make direct comparisons difficult.

In our future work, we will develop the proposed
algorithm for automatic landing site selection for UAV
forced landing. In the test stage we would use a super-
pixel partitioning algorithm instead of rectangular
windows.
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